首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1027篇
  免费   74篇
  2023年   3篇
  2022年   10篇
  2021年   12篇
  2020年   6篇
  2019年   9篇
  2018年   21篇
  2017年   20篇
  2016年   26篇
  2015年   50篇
  2014年   38篇
  2013年   75篇
  2012年   68篇
  2011年   86篇
  2010年   54篇
  2009年   47篇
  2008年   62篇
  2007年   68篇
  2006年   69篇
  2005年   66篇
  2004年   68篇
  2003年   69篇
  2002年   60篇
  2001年   16篇
  2000年   13篇
  1999年   12篇
  1998年   8篇
  1997年   6篇
  1996年   6篇
  1995年   11篇
  1994年   8篇
  1993年   10篇
  1992年   6篇
  1991年   5篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1986年   2篇
  1981年   1篇
  1973年   2篇
排序方式: 共有1101条查询结果,搜索用时 93 毫秒
91.
Because imminent introduction into Vietnam of a vaccine against Rotavirus A is anticipated, baseline information on the whole genome of representative strains is needed to understand changes in circulating strains that may occur after vaccine introduction. In this study, the whole genomes of two G2P[4] strains detected in Nha Trang, Vietnam in 2008 were sequenced, this being the last period during which virtually no rotavirus vaccine was used in this country. The two strains were found to be > 99.9% identical in sequence and had a typical DS‐1 like G2‐P[4]‐I2‐R2‐C2‐M2‐A2‐N2‐T2‐E2‐H2 genotype constellation. Analysis of the Vietnamese strains with > 184 G2P[4] strains retrieved from GenBank/EMBL/DDBJ DNA databases placed the Vietnamese strains in one of the lineages commonly found among contemporary strains, with the exception of the NSP2 and NSP4 genes. The NSP2 genes were found to belong to a previously undescribed lineage that diverged from Chinese sheep and goat rotavirus strains, including a Chinese rotavirus vaccine strain LLR with 95% nucleotide identity; the time of their most recent common ancestor was 1975. The NSP4 genes were found to belong, together with Thai and USA strains, to an emergent lineage (VIII), adding further diversity to ever diversifying NSP4 lineages. Thus, there is a need to enhance surveillance of locally‐circulating strains from both children and animals at the whole genome level to address the effect of rotavirus vaccines on changing strain distribution.  相似文献   
92.
93.
Cytometry is a versatile and powerful method applicable to different fields, particularly pharmacology and biomedical studies. Based on the data obtained, cytometric studies are classified into high-throughput (HTP) or high-content screening (HCS) groups. However, assays combining the advantages of both are required to facilitate research. In this study, we developed a high-throughput system to profile cellular populations in terms of time- or dose-dependent responses to apoptotic stimulations because apoptotic inducers are potent anticancer drugs. We previously established assay systems involving protease to monitor live cells for apoptosis using tunable fluorescence resonance energy transfer (FRET)-based bioprobes. These assays can be used for microscopic analyses or fluorescence-activated cell sorting. In this study, we developed FRET-based bioprobes to detect the activity of the apoptotic markers caspase-3 and caspase-9 via changes in bioprobe fluorescence lifetimes using a flow cytometer for direct estimation of FRET efficiencies. Different patterns of changes in the fluorescence lifetimes of these markers during apoptosis were observed, indicating a relationship between discrete steps in the apoptosis process. The findings demonstrate the feasibility of evaluating collective cellular dynamics during apoptosis.  相似文献   
94.
O6-Methylguanine DNA methyltransferase (MGMT) cancels the anticancer effect of temozolomide (drug for glioblastoma), which introduces methylation to DNA. Therefore, developing an MGMT inhibitor is a promising strategy for the treatment of this cancer. For this purpose, a sensitive detection method that does not depend on the conventional radioisotope (RI) method was developed. This was realized by a fluorescence-based method that measured the amount of cleavable restriction sites demethylated by the action of MGMT; this method was enhanced by introducing a polymerase chain reaction (PCR) amplification step. As an assay of enzyme activity, 20-fold higher sensitivity (subnanomolar) was attained compared with our and others’ fluorescence-based approaches.  相似文献   
95.
96.
97.
Recent studies have been supporting that the generation of Aβ42 oligomers is responsible for Alzheimer's disease. Therefore, those peptides which bind to Aβ42 are scientifically interesting and can be possible candidates for the diagnosis and therapy of Alzheimer's disease. A systemic in vitro evolution, developed recently and the designated progressive library method (PLM), was applied to obtain Ab42-binding aptamers peptides. As a result, high affinity peptide aptamers made of 8 or 9 amino acids could be identified by this approach, endorsing the methodological effectiveness. Namely, the selection products from the secondary library of diversified peptides, which was constructed based on the information obtained from the primary library selection, were confirmed to be superior to those selected from the primary library as had been reported previously. The affinities of those peptides measured by SPR (surface plasmon resonance) were comparable to or higher than that of those peptides so far reported (K(d) of 10??). The other peptides selected were confirmed of their binding by a novel mode of gel shift assay (fluorescence enhancement caused by the binding). Thus, novel Aβ42-binding peptides with high affinity were provided for the future Alzheimer's disease study. The demonstration of the effectiveness of the systemic in vitro evolution of PLM is very encouraging for the study of identifying novel functional peptides.  相似文献   
98.
99.
Aims: The anti‐infectious activity of lactobacilli against multi‐drug resistant Salmonella enterica serovar Typhimurium DT104 (DT104) was examined in a murine model of an opportunistic antibiotic‐induced infection. Methods and Results: Explosive intestinal growth and subsequent lethal extra‐intestinal translocation after oral infection with DT104 during fosfomycin (FOM) administration was significantly inhibited by continuous oral administration of Lactobacillus casei strain Shirota (LcS), which is naturally resistant to FOM, at a dose of 108 colony‐forming units per mouse daily to mice. Comparison of the anti‐Salmonella activity of several Lactobacillus type strains with natural resistance to FOM revealed that Lactobacillus brevis ATCC 14869T, Lactobacillus plantarum ATCC 14917T, Lactobacillus reuteri JCM 1112T, Lactobacillus rhamnosus ATCC 7469T and Lactobacillus salivarius ATCC 11741T conferred no activity even when they obtained the high population levels almost similar to those of the effective strains such as LcS, Lact. casei ATCC 334T and Lactobacillus zeae ATCC 15820T. The increase in concentration of organic acids and maintenance of the lower pH in the intestine because of Lactobacillus colonization were correlated with the anti‐infectious activity. Moreover, heat‐killed LcS was not protective against the infection, suggesting that the metabolic activity of lactobacilli is important for the anti‐infectious activity. Conclusion: These results suggest that certain lactobacilli in combination with antibiotics may be useful for prophylaxis against opportunistic intestinal infections by multi‐drug resistant pathogens, such as DT104. Significance and Impact of the Study: Antibiotics such as FOM disrupt the metabolic activity of the intestinal microbiota that produce organic acids, and that only probiotic strains that are metabolically active in vivo should be selected to prevent intestinal infection when used clinically in combination with certain antibiotics.  相似文献   
100.

Background

Endothelial progenitor cells (EPCs) were shown to have angiogenic potential contributing to neovascularization. However, a clear definition of mouse EPCs by cell surface markers still remains elusive. We hypothesized that CD34 could be used for identification and isolation of functional EPCs from mouse bone marrow.

Methodology/Principal Findings

CD34+ cells, c-Kit+/Sca-1+/Lin (KSL) cells, c-Kit+/Lin (KL) cells and Sca-1+/Lin (SL) cells were isolated from mouse bone marrow mononuclear cells (BMMNCs) using fluorescent activated cell sorting. EPC colony forming capacity and differentiation capacity into endothelial lineage were examined in the cells. Although CD34+ cells showed the lowest EPC colony forming activity, CD34+ cells exhibited under endothelial culture conditions a more adherent phenotype compared with the others, demonstrating the highest mRNA expression levels of endothelial markers vWF, VE-cadherin, and Flk-1. Furthermore, a dramatic increase in immediate recruitment of cells to the myocardium following myocardial infarction and systemic cell injection was observed for CD34+ cells comparing with others, which could be explained by the highest mRNA expression levels of key homing-related molecules Integrin β2 and CXCR4 in CD34+ cells. Cell retention and incorporation into the vasculature of the ischemic myocardium was also markedly increased in the CD34+ cell-injected group, giving a possible explanation for significant reduction in fibrosis area, significant increase in neovascularization and the best cardiac functional recovery in this group in comparison with the others.

Conclusion

These findings suggest that mouse CD34+ cells may represent a functional EPC population in bone marrow, which could benefit the investigation of therapeutic EPC biology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号