首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   20篇
  2022年   2篇
  2021年   7篇
  2020年   7篇
  2019年   10篇
  2018年   12篇
  2017年   4篇
  2016年   8篇
  2015年   7篇
  2014年   15篇
  2013年   16篇
  2012年   13篇
  2011年   16篇
  2010年   5篇
  2009年   11篇
  2008年   4篇
  2007年   6篇
  2006年   11篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2001年   4篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1996年   2篇
  1994年   2篇
  1993年   1篇
  1992年   6篇
  1991年   2篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1982年   2篇
  1979年   2篇
  1978年   4篇
  1977年   4篇
  1976年   4篇
  1975年   1篇
  1974年   4篇
  1973年   4篇
  1972年   1篇
  1971年   4篇
  1969年   3篇
  1967年   1篇
排序方式: 共有250条查询结果,搜索用时 31 毫秒
31.
In this study, importance of Wnt-β-catenin pathway in the development of uterine cervical carcinoma was evaluated. For this purpose, the profiles (expression/methylation/deletion) of β-catenin, p-β-catenin (Y654), Wnt3a, and APC were studied in disease free normal cervical epithelium (n = 9), adjacent normal cervical epithelium of primary tumors (n = 70), CIN (n = 28), CACX (n = 102) samples, and two CACX cell lines (HeLa and SiHa). Immunohistochemical analysis revealed high/medium (74–95%) expression of β-catenin/p-β-catenin (Y654) and Wnt3a and low expression (23–26%) of APC in proliferating basal–parabasal layers contrary to differentiated spinous layer in normal cervix irrespective of HPV16 infection. The expression profile of the genes in the basal–parabasal layers did not change significantly during development of CACX. High (66%) promoter methylation of APC was seen in basal–parabasal layers and the cervical lesions (42–69%), unlike in spinous layers (25%). The promoter methylation status of APC was validated by in vitro demethylation experiments using 5-aza-dC in CACX cell lines. However, additional deletion of APC was significantly increased from CIN (12%) to stage I/II (40%) and became comparable in stage III/IV (48%) of the tumor. Patients with alterations (deletion/methylation) of APC and high/medium expression of Wnt3a/β-catenin/p-β-catenin (Y654) showed significantly poor survival. Thus our data indicate that cumulative effect of Wnt3a overexpression and APC inactivation are needed for overexpression of β-catenin during the development of CACX.  相似文献   
32.
33.
34.
In the present investigation fractioned cellular components like intact pigment bearing thylakoids/chloroplasts, carotenoids, protein, polysaccharides were extracted from the cyanobacterium Anabaena sphaerica and green alga Chlorococcum infusionum. Each of these extracts was used separately in search for efficient reducing agents during gold nanoparticle (GNP) production in pro‐ and eukaryotic algal cell systems. The whole biomass and extracted compounds or cellular structures were exposed in 25 mg L?1 aqueous hydrogen tetrachloroaurate solutions separately at room temperature. Isolated viable chloroplasts from C. infusionum and thylakoids from A. sphaerica were found to be able to reduce gold ions. The protein extracts of both strains were also able to synthesize GNP at 4°C. Extracted polysaccharides of the two strains responded differently. Polysaccharides from A. sphaerica showed positive response in GNP synthesis, whereas no change was observed for C. infusionum. The carotenoids extracts from both strains acted like an efficient reducing agent. Initially the reducing efficiency of these extracted components was confirmed by the appearance of purple color in biomass or in experimental media. The GNPs, synthesized within the biomass were extracted by sonication with sodium citrate. The UV–vis spectroscopy of extracted purple colored suspensions and media showed the absorption bands at approximately 530–540 nm indicating a strong positive signal of GNP synthesis. Transmission electro n microscopy determined the size and shapes of the particles. The X‐ray diffraction study of the synthesized GNP revealed that the 2θ values appeared at 38.2°, 44.5°, 64.8° and 77.8°. Amongst all, isolated thylakoids and chloroplast showed only spherical GNP production with variable size range at pH 4. Monodisperse GNPs were also synthesized by isolated thylakoids and chloroplast at pH 9. A detailed morphological change of gold treated biomass was revealed employing scanning electron microscopy. The fluorescent property of gold loaded cells was studied by fluorescence microscopy.  相似文献   
35.
Stem cell niche research uses nanotechnologies to mimic the extra-cellular microenvironment to promote proliferation and differentiation. The aim of designing different scaffolds is to simulate the best structural and environmental pattern for extracellular matrix. This experiment was designed to study the proliferative behaviour of canine bone marrow deriver mesenchymal stem cells (MSCs) on different nanomaterial based thin film scaffolds of carbon nanotubes (CNT), chitosan and poly ε-caprolactone. Similar number of cells was seeded on the scaffolds and standard cell culture flask, taken as control. Cells were maintained on DMEM media and relative number of metabolically active cells was determined by MTT assay up to day six of culture. Cells proliferated on control and all the scaffolds as the days progressed. Although proliferation rate was slow but no decline of cell number was noticed on the scaffolds during the study period. Initially, the cell proliferation was lower on CNT but as time progressed no significant difference was observed compared to control. The result indicated that nanomaterial based scaffolds reduce the proliferation rate of canine MSCs. However, canine MSCs adapted and proliferated better on CNT substrate in vitro and may be used as a scaffold component in canine tissue engineering in future.  相似文献   
36.
Recent experiments using expression, immunolocalization, and cell culture approaches have provided leading insights into regulation of luteal angiogenesis by different growth factor systems and its role in the function of corpus luteum (CL) in buffalo. On the contrary, lymphangiogenesis and its regulation in the CL are still poorly understood. The aim of this study was to evaluate the expression and localization of lymphangiogenic factors (vascular endothelial growth factor [VEGF]-C and VEGFD), their receptor (VEGFR3), and lymphatic endothelial marker (LYVE1) in bubaline CL during different stages of the estrous cycle and to investigate functional role of VEGFC and VEGFD in luteal lymphangeogenesis. The mRNA and protein expression of VEGFC, VEGFD, and VEGFR3 was significantly greater in mid and late luteal phases, which correlated well with the expression of LYVE1. The lymphangiogenic factors were localized in luteal cells, exclusively in the cytoplasm. Immunoreactivity of VEGFC was greater during midluteal phase and that of VEGFD was greater during the mid and late luteal phases. Luteal cells were cultured in vitro and treated for different time duration (24, 48, and 72 hours) with VEGFC and VEGFD each at 50, 100, and 150 ng/mL concentration and VEGFC with VEGFD at 100 ng/mL concentration. The temporal increase in LYVE1 mRNA expression was significant (P < 0.05) in VEGFC and VEGFC with VEGFD treatment and no significant change was seen in VEGFD treatment. Thus, it seems likely that VEGFD itself has little role in lymphangiogenesis but along with VEGFC it might have a synergistic effect on VEGFR3 receptors for inducing lymphangiogenesis. In summary, the present study provided evidence that VEGFC and VEGFD, and their receptor VEGFR3, are expressed in bubaline CL and are localized exclusively in the cell cytoplasm, suggesting that these factors have a functional role in lymphangiogenesis of CL in buffalo.  相似文献   
37.
Agarose and polyacrylamide gel electrophoresis systems for the molecular mass-dependent separation of hyaluronan (HA) in the size range of approximately 5–500 kDa were investigated. For agarose-based systems, the suitability of different agarose types, agarose concentrations, and buffer systems was determined. Using chemoenzymatically synthesized HA standards of low polydispersity, the molecular mass range was determined for each gel composition over which the relationship between HA mobility and logarithm of the molecular mass was linear. Excellent linear calibration was obtained for HA molecular mass as low as approximately 9 kDa in agarose gels. For higher resolution separation, and for extension to molecular masses as low as approximately 5 kDa, gradient polyacrylamide gels were superior. Densitometric scanning of stained gels allowed analysis of the range of molecular masses present in a sample as well as calculation of weight-average and number-average values. The methods were validated for polydisperse HA samples with viscosity-average molecular masses of 112, 59, 37, and 22 kDa at sample loads of 0.5 μg (for polyacrylamide) to 2.5 μg (for agarose). Use of the methods for electrophoretic mobility shift assays was demonstrated for binding of the HA-binding region of aggrecan (recombinant human aggrecan G1–IGD–G2 domains) to a 150-kDa HA standard.  相似文献   
38.
39.
Inositol pyrophosphates are unique cellular signaling molecules with recently discovered roles in energy sensing and metabolism. Studies in eukaryotes have revealed that these compounds have a rapid turnover, and thus only small amounts accumulate. Inositol pyrophosphates have not been the subject of investigation in plants even though seeds produce large amounts of their precursor, myo‐inositol hexakisphosphate (InsP6). Here, we report that Arabidopsis and maize InsP6 transporter mutants have elevated levels of inositol pyrophosphates in their seed, providing unequivocal identification of their presence in plant tissues. We also show that plant seeds store a little over 1% of their inositol phosphate pool as InsP7 and InsP8. Many tissues, including, seed, seedlings, roots and leaves accumulate InsP7 and InsP8, thus synthesis is not confined to tissues with high InsP6. We have identified two highly similar Arabidopsis genes, AtVip1 and AtVip2, which are orthologous to the yeast and mammalian VIP kinases. Both AtVip1 and AtVip2 encode proteins capable of restoring InsP7 synthesis in yeast mutants, thus AtVip1 and AtVip2 can function as bonafide InsP6 kinases. AtVip1 and AtVip2 are differentially expressed in plant tissues, suggesting non‐redundant or non‐overlapping functions in plants. These results contribute to our knowledge of inositol phosphate metabolism and will lay a foundation for understanding the role of InsP7 and InsP8 in plants.  相似文献   
40.
Despite an existing effective vaccine, hepatitis B virus (HBV) remains a major public health concern. There are effective suppressive therapies for HBV, but they remain expensive and inaccessible to many, and not all patients respond well. Furthermore, HBV can persist as genomic covalently closed circular DNA (cccDNA) that remains in hepatocytes even during otherwise effective therapy and facilitates rebound in patients after treatment has stopped. Therefore, the need for an effective treatment that targets active and persistent HBV infections remains. As a novel approach to treat HBV, we have targeted the HBV genome for disruption to prevent viral reactivation and replication. We generated 3 zinc finger nucleases (ZFNs) that target sequences within the HBV polymerase, core and X genes. Upon the formation of ZFN-induced DNA double strand breaks (DSB), imprecise repair by non-homologous end joining leads to mutations that inactivate HBV genes. We delivered HBV-specific ZFNs using self-complementary adeno-associated virus (scAAV) vectors and tested their anti-HBV activity in HepAD38 cells. HBV-ZFNs efficiently disrupted HBV target sites by inducing site-specific mutations. Cytotoxicity was seen with one of the ZFNs. scAAV-mediated delivery of a ZFN targeting HBV polymerase resulted in complete inhibition of HBV DNA replication and production of infectious HBV virions in HepAD38 cells. This effect was sustained for at least 2 weeks following only a single treatment. Furthermore, high specificity was observed for all ZFNs, as negligible off-target cleavage was seen via high-throughput sequencing of 7 closely matched potential off-target sites. These results show that HBV-targeted ZFNs can efficiently inhibit active HBV replication and suppress the cellular template for HBV persistence, making them promising candidates for eradication therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号