首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   394篇
  免费   43篇
  2023年   2篇
  2022年   2篇
  2021年   8篇
  2020年   7篇
  2019年   9篇
  2018年   13篇
  2017年   6篇
  2016年   10篇
  2015年   17篇
  2014年   21篇
  2013年   23篇
  2012年   28篇
  2011年   21篇
  2010年   12篇
  2009年   12篇
  2008年   11篇
  2007年   17篇
  2006年   21篇
  2005年   13篇
  2004年   9篇
  2003年   7篇
  2002年   13篇
  2001年   11篇
  2000年   7篇
  1999年   9篇
  1998年   6篇
  1997年   4篇
  1996年   2篇
  1995年   5篇
  1994年   3篇
  1993年   7篇
  1992年   10篇
  1991年   9篇
  1990年   6篇
  1989年   2篇
  1988年   6篇
  1987年   10篇
  1986年   11篇
  1985年   6篇
  1984年   5篇
  1983年   4篇
  1979年   2篇
  1978年   3篇
  1977年   4篇
  1975年   3篇
  1972年   2篇
  1970年   2篇
  1969年   3篇
  1968年   2篇
  1967年   2篇
排序方式: 共有437条查询结果,搜索用时 31 毫秒
171.
172.
Drugs with efficacy in psychiatric disorders affect the function of central neurotransmitter amines, which are inactivated primarily by monoamine oxidase (MAO). Effect of these drugs on the two types of MAO (MAO-A and MAO-B) has been studied in rat brain. The result showed that chlorpromazine (CPZ) and imipramine (IMI) at concentrations of 1x10(-2), 5x10(-3) and 2.5x10(-3) M inhibited rat brain mitochondrial MAO-A activity in vitro by 82, 50, 39 and 86, 74, 38 %, respectively. CPZ at concentrations of 5x10(-3), 2.5x10(-3), 1x10(-3) M inhibited rat brain mitochondrial MAO-B activity in vitro by 83, 55, 39 %, respectively, while IMI at concentrations of 5x10(-4), 2.5x10(-4), 1x10(-4) M inhibited the in vitro enzyme activity by 43, 35, 21 %, respectively. Lithium at concentration of 5x10(-3) M could not either inhibit MAO-A or MAO-B in the mitochondrial fraction of rat brain.  相似文献   
173.
D. K. Nag  A. Kurst 《Genetics》1997,146(3):835-847
Palindromic sequences have the potential to form hairpin or cruciform structures, which are putative substrates for several nucleases and mismatch repair enzymes. A genetic method was developed to detect such structures in vivo in the yeast Saccharomyces cerevisiae. Using this method we previously showed that short hairpin structures are poorly repaired by the mismatch repair system in S. cerevisiae. We show here that mismatches, when present in the stem of the hairpin structure, are not processed by the repair machinery, suggesting that they are treated differently than those in the interstrand base-paired duplex DNA. A 140-bp-long palindromic sequence, on the contrary, acts as a meiotic recombination hotspot by generating a site for a double-strand break, an initiator of meiotic recombination. We suggest that long palindromic sequences undergo cruciform extrusion more readily than short ones. This cruciform structure then acts as a substrate for structure-specific nucleases resulting in the formation of a double-strand break during meiosis in yeast. In addition, we show that residual repair of the short hairpin structure occurs in an MSH2-independent pathway.  相似文献   
174.
175.
Meiosis, a specialized cell division process, occurs in all sexually reproducing organisms. During this process a diploid cell undergoes a single round of DNA replication followed by two rounds of nuclear division to produce four haploid gametes. In yeast, the meiotic products are packaged into four spores that are enclosed in a sac known as an ascus. To enhance our understanding of the meiotic developmental pathway and spore formation, we followed differential expression of genes in meiotic versus vegetatively growing cells in the yeast Saccharomyces cerevisiae. Such comparative analyses have identified five different classes of genes that are expressed at different stages of the sporulation program. We identified several meiosis-specific genes including some already known to be induced during meiosis. Here we describe one of these previously uncharacterized genes, SSP1, which plays an essential role in meiosis and spore formation. SSP1 is induced midway through meiosis, and the homozygous mutant-diploid cells fail to sporulate. In ssp1 cells, meiosis is delayed, nuclei fragment after meiosis II, and viability declines rapidly. The ssp1 defect is not related to a microtubule-cytoskeletal-dependent event and is independent of two rounds of meiotic divisions. Our results suggest that Ssp1 is likely to function in a pathway that controls meiotic nuclear divisions and coordinates meiosis and spore formation. Functional analysis of other uncharacterized genes is underway.  相似文献   
176.
Eukaryotic translation initiation is a highly regulated process involving multiple steps, from 43S pre-initiation complex (PIC) assembly, to ribosomal subunit joining. Subunit joining is controlled by the G-protein eukaryotic translation initiation factor 5B (eIF5B). Another protein, eIF1A, is involved in virtually all steps, including subunit joining. The intrinsically disordered eIF1A C-terminal tail (eIF1A-CTT) binds to eIF5B Domain-4 (eIF5B-D4). The ribosomal complex undergoes conformational rearrangements at every step of translation initiation; however, the underlying molecular mechanisms are poorly understood. Here we report three novel interactions involving eIF5B and eIF1A: (i) a second binding interface between eIF5B and eIF1A; (ii) a dynamic intramolecular interaction in eIF1A between the folded domain and eIF1A-CTT; and (iii) an intramolecular interaction between eIF5B-D3 and -D4. The intramolecular interactions within eIF1A and eIF5B interfere with one or both eIF5B/eIF1A contact interfaces, but are disrupted on the ribosome at different stages of translation initiation. Therefore, our results indicate that the interactions between eIF1A and eIF5B are being continuously rearranged during translation initiation. We present a model how the dynamic eIF1A/eIF5B interaction network can promote remodeling of the translation initiation complexes, and the roles in the process played by intrinsically disordered protein segments.  相似文献   
177.
178.
Noise is a world-wide problem that causes nervous, endocrine and cardiovascular disorders, and eventually health hazards in humans and animals. Objective of the current work is to investigate endocrine interaction in noise stress, which subsequently affects other endocrine functions including gonads in a poultry bird like chicks. Gravimetric, ultrastructural and hormonal status of the endocrine organs were examined to ascertain the effects of noise stress. Acute noise at 60 dB had no effect, but at 80 and 100 dB each for 3 h, increased pineal and serum serotonin, and adrenal and serum corticosterone, epinephrine and norepinephrine concentrations, without any change in thyroid or gonadal hormones. Chronic noise exposure at 60, 80 and 100 dB each for 6 h, daily for 7 days, drastically disturbed normal behavior, and quantum of food consumption and water intake. Chronic exposure also significantly decreased body weight including thyroid, ovary and testis weight, and increased adrenal weight. Noise stress caused ultrastructural changes leading to stimulations of pinealocytes (with abundance of rough endoplasmic reticulum and mitochondria), adrenocortical cells (enlarged nuclei and abundance of smooth endoplasmic reticulum) and adrenomedullary cells (enlarged nuclei with presence of chromaffin granules) were observed in noise stress. Additionally, pineal and serum serotonin, N-acetyl serotonin and melatonin, and adrenal and serum corticosterone, epinephrine and norepinephrine levels were significantly elevated following chronic noise exposure. Contrarily, thyroid activity was suppressed with atrophied thyroid follicles followed by declined levels of serum T3 and T4 with elevation of TSH level. Simultaneously, serum 17β-estradiol (E2) and testosterone (T) concentrations were also significantly declined in all the doses of chronic noise. These changes were dose dependent of noise exposure. The findings suggest that (a) adrenal and pineal glands respond primarily to noise and secondarily act on other endocrine organs including gonads in chicks, (b) adrenal directly and/or indirectly causes thyroid and gonadal dysfunctions via pineal following noise exposure in chicks.  相似文献   
179.
Summary To study the excision of bacteriophage Mu at the DNA sequence level, the Mu-derived phage placMu3 was transposed to the transcribed but non-translated leader region of a plasmid-borne tetracycline (tet) resistance gene. Revertants (excision products) were then selected by Tet+ restoration of Tet+ and characterized. Of 21 independent Tet+ revertants, 17 contained simple deletions of most or all of placMu3, while the other four contained more complex rearrangements in which one end of placMu3 had been transposed, and most of the prophage had been deleted. The deletion endpoints were found in short direct repeats in each of the complex rearrangements and in 11 of the 17 simple deletion excisants. The results suggest models of slipped mispairing of template and nascent DNA strands facilitated by proteins of the Mu transposition machinery.  相似文献   
180.
Chloropromazine (CPZ) and imipramine at a concentration of 1×10–3 M inhibit rat brain mitochondrial monoamine oxidase activity in vitro by 70 and 55% respectively, while lithium, even at a concentration of 0.05 M, inhibits the activity of this enzyme very negligibly (4%). In vivo, these drugs at a dose level of 56 mg CPZ, 76 mg Jimipramine and 76 mg lithium chloride/Kg body wt., did not cause any observable variation from normal in brain mitochondrial monoamine oxidase activity.To whom correspondence should be addressed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号