首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   3篇
  2023年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   7篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   6篇
  2007年   4篇
  2006年   4篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1994年   2篇
  1990年   1篇
  1984年   1篇
  1981年   2篇
  1972年   1篇
排序方式: 共有60条查询结果,搜索用时 31 毫秒
11.
Honda H  Miharu N  Ohashi Y  Honda N  Hara T  Ohama K 《Human genetics》1999,105(5):428-436
Meiotic segregation patterns of chromosomes 3 and 9 were analyzed in sperm of two translocation carriers (t(3;9)(q26.2;q32) and t(3;9)(p25;q32)) by triple-color fluorescent in situ hybridization (FISH) with a telomeric DNA probe in addition to two centromeric probes. The frequencies of each sperm product resulting from alternate or adjacent I, adjacent II and 3:1 segregation in a t(3;9)(q26.2;q32) translocation carrier were 88.35%, 5.44% and 5.94%, respectively. On the other hand, the frequencies of each sperm product in a t(3;9)(p25;q32) translocation carrier were 89.23%, 6.02% and 4.48%, respectively. Of all the sperm products, the frequency of normal or chromosomally balanced sperm in a t(3;9)(q26.2;q32) and a t(3;9)(p25;q32) were 52.49% and 47.25%, respectively. The frequencies of each sperm product resulting from various segregations were different between both carriers and significantly deviated from the expected frequencies. Additional dual-color and triple-color FISH were performed to analyze aneuploidy rates for chromosomes 12, 17, 18, X and Y in order to detect any interchromosomal effect; no evidence of an interchromosomal effect was found.  相似文献   
12.
The genus Streptomyces produces two-thirds of microbially derived antibiotics. Polyketides form the largest and most diverse group of these natural products. Antibiotic diversity of polyketides is generated during their biosynthesis by several means, including postpolyketide modification performed by oxidoreductases, a broad group of enzymes including cytochrome P450 monooxygenases (CYPs). CYPs catalyze site-specific oxidation of macrolide antibiotic precursors significantly affecting antibiotic activity. Efficient manipulation of Streptomyces CYPs in generating new antibiotics will require identification and/or engineering of monooxygenases with activities toward a diverse array of chemical substrates. To begin to link structure to function of CYPs involved in secondary metabolic pathways of industrially important species, we determined the X-ray structure of Streptomyces coelicolor A3(2) CYP154A1 at 1.85 A and analyzed it in the context of the closely related CYP154C1 and more distant CYPs from polyketide synthase (EryF) and nonribosomal peptide synthetase (OxyB) biosynthetic pathways. In contrast to CYP154C1, CYP154A1 reveals an active site inaccessible from the molecular surface, and an absence of catalytic activities observed for CYP154C1. Systematic variations in the amino acid patterns and length of the surface HI loop correlate with degree of rotation of the F and G helices relative to the active site in CYP154A1-related CYPs, presumably regulating the degree of active site accessibility and its dimensions. Heme in CYP154A1 is in a 180 degrees flipped orientation compared with most other structurally determined CYPs.  相似文献   
13.
Adult-onset type II citrullinemia (CTLN2) is characterized by a liver-specific deficiency of argininosuccinate synthetase (ASS) protein. We have recently identified the gene responsible for CTLN2, viz., SLC25A13, which encodes a calcium-binding mitochondrial carrier protein, designated citrin, and found five mutations of the SLC25A13 gene in CTLN2 patients. In the present study, we have identified two novel mutations, 1800ins1 and R605X, in SLC25A13 mRNA and the SLC25A13 gene. Diagnostic analysis for the seven mutations in 103 CTLN2 patients diagnosed by biochemical and enzymatic studies has revealed that 102 patients had one or two of the seven mutations and 93 patients were homozygotes or compound heterozygotes. These results indicate that CTLN2 is caused by an abnormality in the SLC25A13 gene, and that our criteria for CTLN2 before DNA diagnosis are correct. Five of 22 patients from consanguineous unions have been shown to be compound heterozygotes, suggesting a high frequency of the mutated genes. The frequency of homozygotes is calculated to be more than 1 in 20,000 from carrier detection (6 in 400 individuals tested) in the Japanese population. We have detected no cross-reactive immune materials in the liver of CTLN2 patients with any of the seven mutations by Western blot analysis with anti-human citrin antibody. From these findings, we hypothesize that CTLN2 is caused by a complete deletion of citrin, although the mechanism of ASS deficiency is still unknown.  相似文献   
14.
We previously identified conformationally denatured albumin (D2 and D3 albumin) in rats with endotoxicosis (Bito R, Shikano T, and Kawabata H. Biochim Biophys Acta 1646: 100–111, 2003). In the present study, we attempted first to confirm whether the denatured albumins generally increase in conditions of oxidative stress and second to characterize the degradative process of the denatured albumin using primary cultured rat liver endothelial cells. We used five models of oxidative stress, including endotoxicosis, ischemic heart disease, diabetes, acute inflammation, and aging, and found that serum concentrations of D3 albumin correlate with the serum levels of thiobarbituric acid-reactive substance (R = 0.87), whereas the concentrations of D2 albumin are 0.52. Ligand blot analysis showed that the D3 albumin binds to gp18 and gp30, which are known endothelial scavenger receptors for chemically denatured albumin. Primary cultured rat liver endothelial cells degraded the FITC-D3 albumin, and the degradation rate decreased to 60% of control levels in response to anti-gp18 and anti-gp30 antibodies, respectively. An equimolar mixture of these antibodies produced an additive inhibitory effect on both uptake and degradation, resulting in levels 20% those of the control. Furthermore, filipin and digitonin, inhibitors of the caveolae-related endocytic pathway, reduced the FITC-D3 albumin uptake and degradation to <20%. Laser-scanning confocal microscopic observation supported these data regarding the uptake and degradation of D3 albumin. These results indicate that conformationally denatured D3 albumin occurs generally under oxidative stress and is degraded primarily via gp18- and gp30-mediated and caveolae-related endocytosis in liver endothelial cells. serum albumin; denaturation; scavenger receptor; caveolae  相似文献   
15.
We investigated whether the amount of circulating cell-free fetal DNA in maternal serum is influenced by fetal karyotype, using real-time quantitative polymerase chain reaction assay. Serum samples were obtained from pregnant women at gestational ages ranging from 15 to 17 weeks, prior to their undergoing amniocentesis. In total, we examined 70 samples consisting of 55 cases of pregnancy with 46,XY, 5 cases with 47,XY,+21, 3 cases with 47,XY,+18, a single case with 46,XY,dup(1) and 2 cases with twins of 46,XY, and 4 cases with 46,XX which were used as negative controls. We measured the concentration of the SRY sequence as a molecular marker for fetal DNA. The SRY sequence was detectable and measurable when the fetuses were male except for one case with 47,XY,+18. This case showed fetal growth retardation and bradycardia. No amplification signals of the SRY sequence were detected when the fetuses were female. The mean concentration of fetal DNA in maternal serum was 31.5 copies/ml in the pregnancy with 46,XY, 23.5 copies/ml in the pregnancies with 47,XY,+21 and 21.5 copies/ml in the pregnancies with 46,XY,+18. There were no significant differences in the concentration of fetal DNA between pregnancies with fetuses of normal karyotype and those with fetuses of abnormal karyotype.  相似文献   
16.
Fanconi anemia (FA) is a rare genetic disorder characterized by genome instability, increased cancer susceptibility, progressive bone marrow failure (BMF), and various developmental abnormalities resulting from the defective FA pathway. FA is caused by mutations in genes that mediate repair processes of interstrand crosslinks and/or DNA adducts generated by endogenous aldehydes. The UBE2T E2 ubiquitin conjugating enzyme acts in FANCD2/FANCI monoubiquitination, a critical event in the pathway. Here we identified two unrelated FA-affected individuals, each harboring biallelic mutations in UBE2T. They both produced a defective UBE2T protein with the same missense alteration (p.Gln2Glu) that abolished FANCD2 monoubiquitination and interaction with FANCL. We suggest this FA complementation group be named FA-T.  相似文献   
17.
Use of mild hyperbaric oxygen less than 2 atmospheres absolute (2026.54 hPa) with normal air is emerging as a common complementary treatment for severe muscle injury. Although hyperbaric oxygen at over 2 atmospheres absolute with 100% O2 promotes healing of skeletal muscle injury, it is not clear whether mild hyperbaric oxygen is equally effective. The purpose of the present study was to investigate the impact of hyperbaric oxygen at 1.25 atmospheres absolute (1266.59 hPa) with normal air on muscle regeneration. The tibialis anterior muscle of male Wistar rats was injured by injection of bupivacaine hydrochloride, and rats were randomly assigned to a hyperbaric oxygen experimental group or to a non-hyperbaric oxygen control group. Immediately after the injection, rats were exposed to hyperbaric oxygen, and the treatment was continued for 28 days. The cross-sectional area of centrally nucleated muscle fibers was significantly larger in rats exposed to hyperbaric oxygen than in controls 5 and 7 days after injury. The number of CD68- or CD68- and CD206-positive cells was significantly higher in rats exposed to hyperbaric oxygen than in controls 24 h after injury. Additionally, tumor necrosis factor-α and interleukin-10 mRNA expression levels were significantly higher in rats exposed to hyperbaric oxygen than in controls 24 h after injury. The number of Pax7- and MyoD- or MyoD- and myogenin-positive nuclei per mm2 and the expression levels of these proteins were significantly higher in rats exposed to hyperbaric oxygen than in controls 5 days after injury. These results suggest that mild hyperbaric oxygen promotes skeletal muscle regeneration in the early phase after injury, possibly due to reduced hypoxic conditions leading to accelerated macrophage infiltration and phenotype transition. In conclusion, mild hyperbaric oxygen less than 2 atmospheres absolute with normal air is an appropriate support therapy for severe muscle injuries.  相似文献   
18.
Sperm chromatin remodeling after oocyte entry is the essential step that initiates embryogenesis. This reaction involves the removal of sperm-specific basic proteins and chromatin assembly with histones. In mammals, three nucleoplasmin/nucleophosmin (NPM) family proteins-NPM1, NPM2 and NPM3-expressed in oocytes are presumed to cooperatively regulate sperm chromatin remodeling. We characterized the sperm chromatin decondensation and nucleosome assembly activities of three human NPM proteins. NPM1 and NPM2 mediated nucleosome assembly independently of other NPM proteins, whereas the function of NPM3 was largely dependent on formation of a complex with NPM1. Maximal sperm chromatin remodeling activity of NPM2 required the inhibition of its non-specific nucleic acid-binding activity by phosphorylation. Furthermore, the oligomer formation with NPM1 elicited NPM3 nucleosome assembly and sperm chromatin decondensation activity. NPM3 also suppressed the RNA-binding activity of NPM1, which enhanced the nucleoplasm-nucleolus shuttling of NPM1 in somatic cell nuclei. Our results proposed a novel mechanism whereby three NPM proteins cooperatively regulate chromatin disassembly and assembly in the early embryo and in somatic cells.  相似文献   
19.
20.
In embryos derived by nuclear-transfer (NT), fusion of donor cells with recipient oocytes resulted in varying patterns of mitochondrial DNA (mtDNA) transmission in NT animals. Distribution of donor cell mtDNA (D-mtDNA) found in offspring of NT-derived founders may also vary from donor cell and host embryo heteroplasmy to host embryo homoplasmy. Here we examined the transmission of mtDNA from NT cows to G(1) offspring. Eleven NT founder cows were produced by fusion of enucleated oocytes (Holstein/Japanese Black) with Jersey/ Holstein oviduct epithelial cells, or Holstein/Japanese Black cumulus cells. Transmission of mtDNA was analyzed by PCR mediated single-strand conformation polymorphism of the D-loop region. In six of seven animals sampled postmortem, heteroplasmy were detected in various tissues, while D-mtDNA could not be detected in blood or hair samples from four live animals. The average proportion of D-mtDNA detected in one NT cow was 7.6%, and those in other cows were <5%. Heteroplasmic NT cows (n = 6) generated a total 12 G(1) offspring. Four of 12 G(1) offspring exhibited high percentages of D-mtDNA populations (range 17-51%). The remaining eight G(1) offspring had slightly or undetectable D-mtDNA (<5%). Generally, a genetic bottleneck in the female germ-line should favor a homoplasmic state. However, proportions of some G(1) offspring maintained heteroplasmy with a much higher percentage of D-mtDNA than their NT dams, which may also reflect a segregation distortion caused by the proposed mitochondrial bottleneck. These results demonstrate that D-mtDNA in NT cows is transmitted to G(1) offspring with varying efficiencies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号