排序方式: 共有93条查询结果,搜索用时 15 毫秒
51.
J Jakovljevic U Ohmayer M Gamalinda J Talkish L Alexander J Linnemann P Milkereit JL Woolford 《RNA (New York, N.Y.)》2012,18(10):1805-1822
Ribosome biogenesis is a complex multistep process that involves alternating steps of folding and processing of pre-rRNAs in concert with assembly of ribosomal proteins. Recently, there has been increased interest in the roles of ribosomal proteins in eukaryotic ribosome biogenesis in vivo, focusing primarily on their function in pre-rRNA processing. However, much less is known about participation of ribosomal proteins in the formation and rearrangement of preribosomal particles as they mature to functional subunits. We have studied ribosomal proteins L7 and L8, which are required for the same early steps in pre-rRNA processing during assembly of 60S subunits but are located in different domains within ribosomes. Depletion of either leads to defects in processing of 27SA(3) to 27SB pre-rRNA and turnover of pre-rRNAs destined for large ribosomal subunits. A specific subset of proteins is diminished from these residual assembly intermediates: six assembly factors required for processing of 27SA(3) pre-rRNA and four ribosomal proteins bound to domain I of 25S and 5.8S rRNAs surrounding the polypeptide exit tunnel. In addition, specific sets of ribosomal proteins are affected in each mutant: In the absence of L7, proteins bound to domain II, L6, L14, L20, and L33 are greatly diminished, while proteins L13, L15, and L36 that bind to domain I are affected in the absence of L8. Thus, L7 and L8 might establish RNP structures within assembling ribosomes necessary for the stable association and function of the A(3) assembly factors and for proper assembly of the neighborhoods containing domains I and II. 相似文献
52.
Dynamic patchiness of photosystem II (PSII) activity in leaves of the crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana Hamet et Perrier, which was independent of stomatal control and was observed during both the day/night cycle and circadian endogenous oscillations of CAM, was previously explained by lateral CO2 diffusion and CO2 signalling in the leaves [Rascher et al. (2001) Proc Natl Acad Sci USA 98:11801–11805; Rascher and Lüttge (2002) Plant Biol 4:671–681]. The aim here was to actually demonstrate the importance of lateral CO2 diffusion and its effects on localized PSII activity. Covering small sections of entire leaves with silicone grease was used for local exclusion of a contribution of atmospheric CO2 to internal CO2 via transport through stomata. A setup for combined measurement of gas exchange and chlorophyll fluorescence imaging was used for recording photosynthetic activity with a spatiotemporal resolution. When remobilization of malic acid from vacuolar storage and its decarboxylation in the CAM cycle caused increasing internal CO2 concentrations sustaining high PSII activity behind closed stomata, PSII activity was also increased in adjacent leaf sections where vacuolar malic acid accumulation was minimal as a result of preventing external CO2 supply due to leaf-surface greasing, and where therefore CO2 could only be supplied by diffusion from the neighbouring malic acid-remobilizing leaf tissue. This demonstrates lateral CO2 diffusion and its effect on local photosynthetic activity. 相似文献
53.
The aim of this study was to assess the effects of vitamin C (ascorbic acid) on coronary flow and oxidative stress markers with or without non-specific inhibition of nitric oxide synthase by N(ω)-nitro-L-arginine monomethyl ester (L-NAME) in isolated rat hearts. The hearts of male Wistar albino rats (n = 12, age 8 weeks, body mass 180-200 g) were retrograde perfused according to the Langendorff technique at gradually increased constant perfusion pressure (40-120 cm H2O). Coronary flow, nitrite outflow, superoxide anion production, and index of lipid peroxidation (by measuring thiobarbituric acid reactive substances) in coronary effluent were determined. The experiments were performed during control conditions and in presence of vitamin C (100 μM) alone or vitamin C (100 μM) + L-NAME (30 μM). Administration of vitamin C induced only increase of nitrite levels, while vitamin C + L-NAME induced significant decrease of coronary flow above autoregulatory range, i.e. especially at higher coronary perfusion pressure (CPP) values, accompanied with similar dynamic in nitrite outflow. Vitamin C + L-NAME also induced significant decrease in TBARS production. The results of our study show no significant effects of vitamin C administration either on ROS levels or on coronary flow in isolated rat heart. 相似文献
54.
Thorsten Wille Britta Barlag Vladimir Jakovljevic Michael Hensel Victor Sourjik Roman G. Gerlach 《PloS one》2015,10(4)
Protein-protein interactions are important layers of regulation in all kingdoms of life. Identification and characterization of these interactions is one challenging task of the post-genomic era and crucial for understanding of molecular processes within a cell. Several methods have been successfully employed during the past decades to identify protein-protein interactions in bacteria, but most of them include tedious and time-consuming manipulations of DNA. In contrast, the MultiSite Gateway system is a fast tool for transfer of multiple DNA fragments between plasmids enabling simultaneous and site directed cloning of up to four fragments into one construct. Here we developed a new set of Gateway vectors including custom made entry vectors and modular Destination vectors for studying protein-protein interactions via Fluorescence Resonance Energy Transfer (FRET), Bacterial two Hybrid (B2H) and split Gaussia luciferase (Gluc), as well as for fusions with SNAP-tag and HaloTag for dual-color super-resolution microscopy. As proof of principle, we characterized the interaction between the Salmonella effector SipA and its chaperone InvB via split Gluc and B2H approach. The suitability for FRET analysis as well as functionality of fusions with SNAP- and HaloTag could be demonstrated by studying the transient interaction between chemotaxis response regulator CheY and its phosphatase CheZ. 相似文献
55.
Miles TD Jakovljevic J Horsey EW Harnpicharnchai P Tang L Woolford JL 《Molecular and cellular biology》2005,25(23):10419-10432
The essential, conserved yeast nucleolar protein Ytm1 is one of 17 proteins in ribosome assembly intermediates that contain WD40 protein-protein interaction motifs. Such proteins may play key roles in organizing other molecules necessary for ribosome biogenesis. Ytm1 is present in four consecutive 66S preribosomes containing 27SA2, 27SA3, 27SB, and 25.5S plus 7S pre-rRNAs plus ribosome assembly factors and ribosomal proteins. Ytm1 binds directly to Erb1 and is present in a heterotrimeric subcomplex together with Erb1 and Nop7, both within preribosomes and independently of preribosomes. However, Nop7 and Erb1 assemble into preribosomes prior to Ytm1. Mutations in the WD40 motifs of Ytm1 disrupt binding to Erb1, destabilize the heterotrimer, and delay pre-rRNA processing and nuclear export of preribosomes. Nevertheless, 66S preribosomes lacking Ytm1 remain otherwise intact. 相似文献
56.
The effects of nimodipine and L-NAME on coronary flow and oxidative stress parameters in isolated rat heart 总被引:1,自引:0,他引:1
The aim of this study was to assess the effects of Ca2+ channel antagonist nimodipine (in concentration which competitive inhibited phosphodiesterase 1--PDE1) on oxidative stress alone or under inhibition of nitric oxide synthase by L-NAME in isolated rat heart. The hearts from male Wistar albino rats (n=18, BM about 200 g, age 8 weeks) were retrograde perfused according to the Langendorff technique at gradually increased constant perfusion pressure conditions (CPP, 40-120 cm H2O). The experiments were performed under control conditions, in the presence of Nimodipine (2 microM) or Nimodipine (2 microM) plus L-NAME (30 microM). Coronary flow (CF) varied in the autoregulatory range from 3.7 +/- 0.4 ml/min/g wt at 50 cm H2O to 4.35 +/- 0.79 at 90 cm H2O. Basal nitrite outflow, index of lipid peroxidation (measured as TBARS release) and superoxide anion release (O2-) (at 60 cm H2O) were 0.64 +/- 0.18 nmol/min/g wt, 0.55 +/- 0.13 micromol/min/g wt and 19.72 +/- 3.70 nmol/min/g wt, respectively. Nimodipine induced significant vasodilation at all values of CPP (from 26% at 40 cm H2O to 36% at 120 cm H2O) accompanied with significant decrease of nitrite outflow (from 59% at 40 cm H2O to 40% at 120 cm H2O), significant increase of TBARS above autoregulatory range (about 40%) and significant increase of O2- release (from 186% at 40 cm H2O to 117% at 120 cm H2O). However, perfusion with L-NAME completely reversed the effects of Nimodipine. Nimodipine-induced flow changes were decreased under L-NAME (from 3% at 40 cm H2O to 11% at 120 cm H2O) without changes in the autoregulatory range, accompanied with significantly increased nitrite outflow (from 69% at 40 cm H2O to 36% at 120 cm H2O) and TBARS release (almost 50%), as well as significantly decreased O2- release (from 50% at 40 cm H2O to 43% at 120 cm H20). Our findings show that effect of nimodipine on coronary flow should be significantly influenced by NO, TBARS and O2- release in isolated rat heart. 相似文献
57.
Aleksandar Baji? Mihajlo Spasi? Pavle R. Andjus Danijela Savi? Ana Parabucki Aleksandra Nikoli?-Koki? Ivan Spasojevi? 《PloS one》2013,8(10)
The effects of H2O2 are widely studied in cell cultures and other in vitro systems. However, such investigations are performed with the assumption that H2O2 concentration is constant, which may not properly reflect in vivo settings, particularly in redox-turbulent microenvironments such as mitochondria. Here we introduced and tested a novel concept of fluctuating oxidative stress. We treated C6 astroglial cells and primary astrocytes with H2O2, using three regimes of exposure – continuous, as well as fluctuating at low or high rate, and evaluated mitochondrial membrane potential and other parameters of mitochondrial activity – respiration, reducing capacity, and superoxide production, as well as intracellular ATP, intracellular calcium, and NF-κB activation. When compared to continuous exposure, fluctuating H2O2 induced a pronounced hyperpolarization in mitochondria, whereas the activity of electron transport chain appears not to be significantly affected. H2O2 provoked a decrease of ATP level and an increase of intracellular calcium concentration, independently of the regime of treatment. However, fluctuating H2O2 induced a specific pattern of large-amplitude fluctuations of calcium concentration. An impact on NF-κB activation was observed for high rate fluctuations, whereas continuous and low rate fluctuating oxidative stress did not provoke significant effects. Presented results outline the (patho)physiological relevance of redox fluctuations. 相似文献
58.
59.
60.
Composition and functional characterization of yeast 66S ribosome assembly intermediates 总被引:1,自引:0,他引:1
Harnpicharnchai P Jakovljevic J Horsey E Miles T Roman J Rout M Meagher D Imai B Guo Y Brame CJ Shabanowitz J Hunt DF Woolford JL 《Molecular cell》2001,8(3):505-515
The pathway and complete collection of factors that orchestrate ribosome assembly are not clear. To address these problems, we affinity purified yeast preribosomal particles containing the nucleolar protein Nop7p and developed means to separate their components. Nop7p is associated primarily with 66S preribosomes containing either 27SB or 25.5S plus 7S pre-rRNAs. Copurifying proteins identified by mass spectrometry include ribosomal proteins, nonribosomal proteins previously implicated in 60S ribosome biogenesis, and proteins not known to be involved in ribosome production. Analysis of strains mutant for eight of these proteins not previously implicated in ribosome biogenesis showed that they do participate in this pathway. These results demonstrate that proteomic approaches in concert with genetic tools provide powerful means to purify and characterize ribosome assembly intermediates. 相似文献