排序方式: 共有555条查询结果,搜索用时 15 毫秒
551.
Telocytes (TCs) form a cardiac network of interstitial cells. Our previous studies have shown that TCs are involved in heterocellular contacts with cardiomyocytes and cardiac stem/progenitor cells. In addition, TCs frequently establish 'stromal synapses' with several types of immunoreactive cells in various organs ( www.telocytes.com ). Using electron microscopy (EM) and electron microscope tomography (ET), we further investigated the interstitial cell network of TCs and found that TCs form 'atypical' junctions with virtually all types of cells in the human heart. EM and ET showed different junction types connecting TCs in a network (puncta adhaerentia minima, processus adhaerentes and manubria adhaerentia). The connections between TCs and cardiomyocytes are 'dot' junctions with nanocontacts or asymmetric junctions. Junctions between stem cells and TCs are either 'stromal synapses' or adhaerens junctions. An unexpected finding was that TCs have direct cell-cell (nano)contacts with Schwann cells, endothelial cells and pericytes. Therefore, ultrastructural analysis proved that the cardiac TC network could integrate the overall 'information' from vascular system (endothelial cells and pericytes), nervous system (Schwann cells), immune system (macrophages, mast cells), interstitium (fibroblasts, extracellular matrix), stem cells/progenitors and working cardiomyocytes. Generally, heterocellular contacts occur by means of minute junctions (point contacts, nanocontacts and planar contacts) and the mean intermembrane distance is within the macromolecular interaction range (10-30 nm). In conclusion, TCs make a network in the myocardial interstitium, which is involved in the long-distance intercellular signaling coordination. This integrated interstitial system appears to be composed of large homotropic zones (TC-TC junctions) and limited (distinct) heterotropic zones (heterocellular junctions of TCs). 相似文献
552.
Evolutionary processes such as hybridisation, lateral gene transfer, and recombination are all key factors in shaping the structure of genes and genomes. However, since such processes are not always best represented by trees, there is now considerable interest in using more general networks instead. For example, in recent studies it has been shown that networks can be used to provide lower bounds on the number of recombination events and also for the number of lateral gene transfers that took place in the evolutionary history of a set of molecular sequences. In this paper we describe the theoretical performance of some related bounds that result when merging pairs of trees into networks. 相似文献
553.
Increased Dkk‐1 plasma levels may discriminate disease subtypes in myeloproliferative neoplasms 下载免费PDF全文
Cristina Mambet Laura Necula Simona Mihai Lilia Matei Coralia Bleotu Mihaela Chivu‐Economescu Oana Stanca Aurelia Tatic Nicoleta Berbec Cristiana Tanase Carmen C. Diaconu 《Journal of cellular and molecular medicine》2018,22(8):4005-4011
Alterations in the bone marrow niche induced by abnormal production of cytokines and other soluble factors have been associated with disease progression in classical BCR‐ABL1 negative myeloproliferative neoplasms (MPN). Variations in circulating proteins might reflect local disease processes and plasma proteome profiling could serve to identify possible diagnostic and prognostic biomarkers. We employed a human cytokine array to screen for 105 distinct analytes in pooled plasma samples obtained from untreated young MPN patients (<35 years) with different clinical phenotypes and driver mutations, as well as from healthy individuals. Among molecules that exhibited significantly increased levels in MPN patients versus controls, the top of the list was represented by Dickkopf‐related protein 1 (Dkk‐1), which also showed the highest potential for discrimination between MPN subtypes. In the next step, a quantitative ELISA was used to measure plasma Dkk‐1 levels in 30 young‐onset MPN—10 essential thrombocythemia (ET), 10 polycythemia vera (PV), 10 pre‐fibrotic primary myelofibrosis (pre‐PMF)—and 10 controls. The results suggested that plasma Dkk‐1 levels could differentiate ET from pre‐PMF, in JAK2 V617F‐positive as well as in CALR‐positive patients, and also ET from PV in JAK2 V617F‐positive patients. 相似文献
554.
555.
Laurentiu M. Popescu Shengshou Hu Mihaela Gherghiceanu 《Journal of cellular and molecular medicine》2015,19(1):31-45
Tradition considers that mammalian heart consists of about 70% non‐myocytes (interstitial cells) and 30% cardiomyocytes (CMs). Anyway, the presence of telocytes (TCs) has been overlooked, since they were described in 2010 (visit www.telocytes.com ). Also, the number of cardiac stem cells (CSCs) has not accurately estimated in humans during ageing. We used electron microscopy to identify and estimate the number of cells in human atrial myocardium (appendages). Three age‐related groups were studied: newborns (17 days–1 year), children (6–17 years) and adults (34–60 years). Morphometry was performed on low‐magnification electron microscope images using computer‐assisted technology. We found that interstitial area gradually increases with age from 31.3 ± 4.9% in newborns to 41 ± 5.2% in adults. Also, the number of blood capillaries (per mm2) increased with several hundreds in children and adults versus newborns. CMs are the most numerous cells, representing 76% in newborns, 88% in children and 86% in adults. Images of CMs mitoses were seen in the 17‐day newborns. Interestingly, no lipofuscin granules were found in CMs of human newborns and children. The percentage of cells that occupy interstitium were (depending on age): endothelial cells 52–62%; vascular smooth muscle cells and pericytes 22–28%, Schwann cells with nerve endings 6–7%, fibroblasts 3–10%, macrophages 1–8%, TCs about 1% and stem cells less than 1%. We cannot confirm the popular belief that cardiac fibroblasts are the most prevalent cell type in the heart and account for about 20% of myocardial volume. Numerically, TCs represent a small fraction of human cardiac interstitial cells, but because of their extensive telopodes, they achieve a 3D network that, for instance, supports CSCs. The myocardial (very) low capability to regenerate may be explained by the number of CSCs, which decreases fivefold by age (from 0.5% to 0.1% in newborns versus adults). 相似文献