排序方式: 共有555条查询结果,搜索用时 15 毫秒
11.
The structural changes in leaves of grapevine plants (Vitis vinifera L.) exposed to different ozone concentrations were investigated. Ozone fumigations were performed in open-top chambers at
four different ozone levels (charcoal-filtered air (F), ambient air (N), ambient air + 25 mm3m−3 ozone (O-25) and ambient air + 50 mm3m−3 ozone (O-50)).
The leaves of plants from chambers with increased ozone concentrations (O-25 and O-50) were significantly thicker than the
controls (F), owing to increased thickness of the mesophyll layer. Observing O-50 leaves, it was found that the mesophyll
cell wall displayed structural changes. In some places cell wall thickness increased up to 1 μm. We found callose deposits
on the inner side of the cell walls of mesophyll cells. These data are in accord with the concept that the mesophyll cell
wall acts as a barrier against the penetration of tropospheric ozone into the cells. 相似文献
12.
Energy-coupled transporters in the outer membrane of Escherichia coli and other Gram-negative bacteria allow the entry of scarce substrates, toxic proteins, and bacterial viruses (phages) into the cells. The required energy is derived from the proton-motive force of the cytoplasmic membrane, which is coupled to the outer membrane via the ExbB-ExbD-TonB protein complex. Knowledge of the structure of this complex is required to elucidate the mechanisms of energy harvesting in the cytoplasmic membrane and energy transfer to the outer membrane transporters. Here we solubilized an ExbB oligomer and an ExbB-ExbD subcomplex from the cytoplasmic membrane with the detergent undecyl maltoside. Using laser-induced liquid bead ion desorption mass spectrometry (LILBID-MS), we determined at moderate desorption laser energies the oligomeric structure of ExbB to be mainly hexameric (ExbB(6)), with minor amounts of trimeric (ExbB(3)), dimeric (ExbB(2)), and monomeric (ExbB(1)) oligomers. Under the same conditions ExbB-ExbD formed a subcomplex consisting of ExbB(6)ExbD(1), with a minor amount of ExbB(5)ExbD(1). At higher desorption laser intensities, ExbB(1) and ExbD(1) and traces of ExbB(3)ExbD(1), ExbB(2)ExbD(1), ExbB(1)ExbD(1), ExbB(3), and ExbB(2) were observed. Since the ExbB(6) complex and the ExbB(6)ExbD(1) complex remained stable during solubilization and subsequent chromatographic purification on nickel-nitrilotriacetate agarose, Strep-Tactin, and Superdex 200, and during native blue gel electrophoresis, we concluded that ExbB(6) and ExbB(6)ExbD(1) are subcomplexes on which the final complex including TonB is assembled. 相似文献
13.
Serpe M Umulis D Ralston A Chen J Olson DJ Avanesov A Othmer H O'Connor MB Blair SS 《Developmental cell》2008,14(6):940-953
In Drosophila, the secreted BMP-binding protein Short gastrulation (Sog) inhibits signaling by sequestering BMPs from receptors, but enhances signaling by transporting BMPs through tissues. We show that Crossveinless 2 (Cv-2) is also a secreted BMP-binding protein that enhances or inhibits BMP signaling. Unlike Sog, however, Cv-2 does not promote signaling by transporting BMPs. Rather, Cv-2 binds cell surfaces and heparan sulfate proteoglygans and acts over a short range. Cv-2 binds the type I BMP receptor Thickveins (Tkv), and we demonstrate how the exchange of BMPs between Cv-2 and receptor can produce the observed biphasic response to Cv-2 concentration, where low levels promote and high levels inhibit signaling. Importantly, we show also how the concentration or type of BMP present can determine whether Cv-2 promotes or inhibits signaling. We also find that Cv-2 expression is controlled by BMP signaling, and these combined properties enable Cv-2 to exquisitely tune BMP signaling. 相似文献
14.
Mihaela O Romanitan Bogdan O Popescu ?tefan Spulber Ovidiu B?jenaru Lauren?iu M Popescu Bengt Winblad Nenad Bogdanovic 《Journal of cellular and molecular medicine》2010,14(5):1088-1100
Claudins (Cls) are a multigene family of transmembrane proteins with different tissue distribution, which have an essential role in the formation and sealing capacity of tight junctions (TJs). At the level of the blood–brain barrier (BBB), TJs are the main molecular structures which separate the neuronal milieu from the circulatory space, by a restriction of the paracellular flow of water, ions and larger molecules into the brain. Different studies suggested recently significant BBB alterations in both vascular and degenerative dementia types. In a previous study we found in Alzheimer’s disease (AD) and vascular dementia (VaD) brains an altered expression of occludin, a molecular partner of Cls in the TJs structure. Therefore in this study, using an immunohistochemical approach, we investigated the expression of Cl family proteins (Cl‐2, Cl‐5 and Cl‐11) in frontal cortex of aged control, AD and VaD brains. To estimate the number of Cl‐expressing cells, we applied a random systematic sampling and the unbiased optical fractionator method. We found selected neurons, astrocytes, oligodendrocytes and endothelial cells expressing Cl‐2, Cl‐5 and Cl‐11 at detectable levels in all cases studied. We report a significant increase in ratio of neurons expressing Cl‐2, Cl‐5 and Cl‐11 in both AD and VaD as compared to aged controls. The ratio of astrocytes expressing Cl‐2 and Cl‐11 was significantly higher in AD and VaD as compared to aged controls. The ratio of oligodendrocytes expressing Cl‐11 was significantly higher in AD and the ratio of oligodendrocytes expressing Cl‐2 was significantly higher in VaD as compared to aged controls. Within the cerebral cortex, Cls were selectively expressed by pyramidal neurons, which are the ones responsible for cognitive processes and affected by AD pathology. Our findings suggest a new function of Cl family proteins which might be linked to response to cellular stress. 相似文献
15.
Kunuthur SP Mocanu MM Hemmings BA Hausenloy DJ Yellon DM 《Journal of cellular and molecular medicine》2012,16(8):1739-1749
Phosphatidyl-inositol-3-kinase (PI3K)-Akt pathway is essential for conferring cardioprotection in response to ischaemic preconditioning (IPC) stimulus. However, the role of the individual Akt isoforms expressed in the heart in mediating the protective response to IPC is unknown. In this study, we investigated the specific contribution of Akt1 and Akt2 in cardioprotection against ischaemia-reperfusion (I-R) injury. Mice deficient in Akt1 or Akt2 were subjected to in vivo regional myocardial ischaemia for 30 min. followed by reperfusion for 2 hrs with or without a prior IPC stimulus. Our results show that mice deficient in Akt1 were resistant to protection with either one or three cycles of IPC stimulus (42.7 ± 6.5% control versus 38.5 ± 1.9% 1 χ IPC, N = 6, NS; 41.4 ± 6.3% control versus 32.4 ± 3.2% 3 χ IPC, N = 10, NS). Western blot analysis, performed on heart samples taken from Akt1(-/-) mice subjected to IPC, revealed an impaired phosphorylation of GSK-3β, a downstream effector of Akt, as well as Erk1/2, the parallel component of the reperfusion injury salvage kinase pathway. Akt2(-/-) mice, which exhibit a diabetic phenotype, however, were amenable to protection with three but not one cycle of IPC (46.4 ± 5.6% control versus 35.9 ± 5.0% in 1 χ IPC, N = 6, NS; 47.0 ± 6.0% control versus 30.8 ± 3.3% in 3 χ IPC, N = 6; *P = 0.039). Akt1 but not Akt2 is essential for mediating a protective response to an IPC stimulus. Impaired activation of GSK-3β and Erk1/2 might be responsible for the lack of protective response to IPC in Akt1(-/-) mice. The rise in threshold for protection in Akt2(-/-) mice might be due to their diabetic phenotype. 相似文献
16.
17.
Identification of microRNAs of the herpesvirus family 总被引:1,自引:0,他引:1
Pfeffer S Sewer A Lagos-Quintana M Sheridan R Sander C Grässer FA van Dyk LF Ho CK Shuman S Chien M Russo JJ Ju J Randall G Lindenbach BD Rice CM Simon V Ho DD Zavolan M Tuschl T 《Nature methods》2005,2(4):269-276
Epstein-Barr virus (EBV or HHV4), a member of the human herpesvirus (HHV) family, has recently been shown to encode microRNAs (miRNAs). In contrast to most eukaryotic miRNAs, these viral miRNAs do not have close homologs in other viral genomes or in the genome of the human host. To identify other miRNA genes in pathogenic viruses, we combined a new miRNA gene prediction method with small-RNA cloning from several virus-infected cell types. We cloned ten miRNAs in the Kaposi sarcoma-associated virus (KSHV or HHV8), nine miRNAs in the mouse gammaherpesvirus 68 (MHV68) and nine miRNAs in the human cytomegalovirus (HCMV or HHV5). These miRNA genes are expressed individually or in clusters from either polymerase (pol) II or pol III promoters, and share no substantial sequence homology with one another or with the known human miRNAs. Generally, we predicted miRNAs in several large DNA viruses, and we could neither predict nor experimentally identify miRNAs in the genomes of small RNA viruses or retroviruses. 相似文献
18.
The aim of this study was to examine the diurnal and seasonal variations in the sensitivity of leaf lamina (K lam) hydraulic conductance to irradiance in bur oak (Quercus macrocarpa Michx.) and trembling aspen (Populus tremuloides Michx.), which vary in their responses of K lam to irradiance. K lam was determined using the high-pressure method and the measurements were carried out in June, August and September. The irradiance response of K lam in bur oak was present throughout the day and declined in senescing leaves. In trembling aspen, K lam declined from morning to late afternoon and drastically decreased before the onset of leaf senescence, but it was not sensitive to irradiance. In both tree species, the capacity of the petioles to supply water to leaf lamina changed during the day in accordance with the ability of the leaf lamina to transport water. Petiole hydraulic conductivity (K pet) declined during the season in bur oak leaves, while it tended to increase in trembling aspen leaves. There was no correlation between the K lam values and air temperature or light intensity at the time of leaf collection. For trembling aspen, K pet was negatively correlated with the air temperature suggesting sensitivity to drought. We conclude that the water transport properties of petioles and leaf lamina in the two studied tree species reflect their ecological adaptations. Trembling aspen leaves have high hydraulic conductivity and high stomatal conductance regardless of the irradiance level, consistent with the rapid growth and high demand for water. In contrast, the increased lamina hydraulic conductivity and stomatal conductance under high irradiance in bur oak trees reflect a water conservation strategy. 相似文献
19.
How control of subcellular events in single cells determines morphogenesis on the scale of the tissue is largely unresolved. The stereotyped cross-midline mitoses of progenitors in the zebrafish neural keel provide a unique experimental paradigm for defining the role and control of single-cell orientation for tissue-level morphogenesis in vivo. We show here that the coordinated orientation of individual progenitor cell division in the neural keel is the cellular determinant required for morphogenesis into a neural tube epithelium with a single straight lumen. We find that Scribble is required for oriented cell division and that its function in this process is independent of canonical apicobasal and planar polarity pathways. We identify a role for Scribble in controlling clustering of α-catenin foci in dividing progenitors. Loss of either Scrib or N-cadherin results in abnormally oriented mitoses, reduced cross-midline cell divisions, and similar neural tube defects. We propose that Scribble-dependent nascent cell-cell adhesion clusters between neuroepithelial progenitors contribute to define orientation of their cell division. Finally, our data demonstrate that while oriented mitoses of individual cells determine neural tube architecture, the tissue can in turn feed back on its constituent cells to define their polarization and cell division orientation to ensure robust tissue morphogenesis. 相似文献
20.
Zór K Castellarnau M Pascual D Pich S Plasencia C Bardsley R Nistor M 《Biosensors & bioelectronics》2011,26(11):4283-4288
The analytical method described, based on antibody-antigen bio-recognition and the measuring system for amperometric detection, was designed for accurate, easy to use and cost effective quantification of calpastatin, a meat tenderness biomarker. The novel assay for calpastatin quantification was integrated in a portable electrochemical device known as the Tendercheck system and was used to analyze meat samples collected from animals of different breeds and ages. The data obtained were correlated (R2 = 0.62) with Warner Bratzler Shear Force (WBSF) measurements, a routinely used method for meat tenderness determination. 相似文献