首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   901篇
  免费   86篇
  987篇
  2023年   7篇
  2022年   14篇
  2021年   19篇
  2020年   20篇
  2019年   30篇
  2018年   35篇
  2017年   22篇
  2016年   48篇
  2015年   56篇
  2014年   42篇
  2013年   66篇
  2012年   75篇
  2011年   79篇
  2010年   47篇
  2009年   49篇
  2008年   56篇
  2007年   60篇
  2006年   41篇
  2005年   47篇
  2004年   31篇
  2003年   35篇
  2002年   20篇
  2001年   10篇
  2000年   6篇
  1999年   5篇
  1998年   7篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   8篇
  1993年   4篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1988年   4篇
  1987年   2篇
  1986年   4篇
  1983年   1篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
  1965年   2篇
  1957年   1篇
排序方式: 共有987条查询结果,搜索用时 7 毫秒
31.
Coordination between structural and physiological traits is key to plants' responses to environmental fluctuations. In heterobaric leaves, bundle sheath extensions (BSEs) increase photosynthetic performance (light‐saturated rates of photosynthesis, Amax) and water transport capacity (leaf hydraulic conductance, Kleaf). However, it is not clear how BSEs affect these and other leaf developmental and physiological parameters in response to environmental conditions. The obscuravenosa (obv) mutation, found in many commercial tomato varieties, leads to absence of BSEs. We examined structural and physiological traits of tomato heterobaric and homobaric (obv) near‐isogenic lines grown at two different irradiance levels. Kleaf, minor vein density, and stomatal pore area index decreased with shading in heterobaric but not in homobaric leaves, which show similarly lower values in both conditions. Homobaric plants, on the other hand, showed increased Amax, leaf intercellular air spaces, and mesophyll surface area exposed to intercellular airspace (Smes) in comparison with heterobaric plants when both were grown in the shade. BSEs further affected carbon isotope discrimination, a proxy for long‐term water‐use efficiency. BSEs confer plasticity in traits related to leaf structure and function in response to irradiance levels and might act as a hub integrating leaf structure, photosynthetic function, and water supply and demand.  相似文献   
32.
33.
34.
35.
The molecular mechanisms controlling the subunit composition of glutamate receptors are crucial for the formation of neural circuits and for the long-term plasticity underlying learning and memory. Here we use the Drosophila neuromuscular junction (NMJ) to examine how specific receptor subtypes are recruited and stabilized at synaptic locations. In flies, clustering of ionotropic glutamate receptors (iGluRs) requires Neto (Neuropillin and Tolloid-like), a highly conserved auxiliary subunit that is essential for NMJ assembly and development. Drosophila neto encodes two isoforms, Neto-α and Neto-β, with common extracellular parts and distinct cytoplasmic domains. Mutations that specifically eliminate Neto-β or its intracellular domain were generated. When Neto-β is missing or is truncated, the larval NMJs show profound changes in the subtype composition of iGluRs due to reduced synaptic accumulation of the GluRIIA subunit. Furthermore, neto-β mutant NMJs fail to accumulate p21-activated kinase (PAK), a critical postsynaptic component implicated in the synaptic stabilization of GluRIIA. Muscle expression of either Neto-α or Neto-β rescued the synaptic transmission at neto null NMJs, indicating that Neto conserved domains mediate iGluRs clustering. However, only Neto-β restored PAK synaptic accumulation at neto null NMJs. Thus, Neto engages in intracellular interactions that regulate the iGluR subtype composition by preferentially recruiting and/or stabilizing selective receptor subtypes.  相似文献   
36.
37.
Biological Trace Element Research - Manganese (Mn) is essential for several species and daily requirements are commonly met by an adequate diet. Mn overload may cause motor and psychiatric...  相似文献   
38.
The processes involved in shaping latitudinal‐diversity gradients (LDGs) have been a longstanding source of debate and research. Climatic, historical and evolutionary factors have all been shown to contribute to the formation of LDGs. However, meta‐analyses have shown that different clades have LDG slopes that may vary in more than one order of magnitude. Such large variation cannot be explained solely by climatic or historical factors (e.g. difference in surface area between temperate and tropical zones) given that all clades within a geographic region are subject to the same conditions. Therefore, biotic processes intrinsic to each taxonomic group could be relevant in explaining rate differences in diversity decline across latitudinal gradients among groups. In this study, we developed a model simulating multiple competing species subjected (or not) to a demographic Allee effect. We simulated the range expansion of these species across an environmental gradient to show how these two overlooked factors (competition and Allee effects) are capable of modulating LDGs. Allee effects resulted in a steeper LDG given a higher probability of local extinction and lower colonization capacity compared to species without Allee effects. Likewise, stronger competition also led to a steeper decline in species diversity compared to scenarios with weaker species antagonistic interactions. This pattern occurred mostly due to the strength of priority effects, wherein scenarios with strong competition, species that dispersed earlier in the landscape were able to secure many patches whereas late‐arriving species were progressively precluded from expanding their ranges. Overall, our results suggest that the effect of biotic processes in shaping macroecological patterns could be more important than it is currently appreciated.  相似文献   
39.
Monosomy‐3 in primary uveal melanoma (UM) is associated with a high risk of metastasis and mortality. Although circulating melanoma cells (CMC) can be found in most UM patients, only approximately 50% of the patients develop metastases. We utilized a novel immuno‐FISH assay to detect chromosome‐3 in intact CMC isolated by dual immunomagnetic enrichment. Circulating melanoma cells were detected in 91% of the patients (n = 44) with primary non‐metastatic UM, of which 58% were positive for monosomy‐3. The monosomy‐3 status of CMC corresponded to the monosomy‐3 status of the primary tumor in 10 of the 11 patients where this could be tested. Monosomy‐3 in the CMC was associated with an advanced tumor stage (P = 0.046) and was detected in all four patients who developed metastasis within the follow‐up period of 4 yr. This non‐invasive technique may enable the identification of UM patients at risk for metastasis particularly when a primary tumor specimen is unavailable.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号