首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   506篇
  免费   49篇
  2023年   4篇
  2022年   7篇
  2021年   8篇
  2020年   11篇
  2019年   14篇
  2018年   11篇
  2017年   9篇
  2016年   24篇
  2015年   36篇
  2014年   22篇
  2013年   38篇
  2012年   46篇
  2011年   63篇
  2010年   34篇
  2009年   28篇
  2008年   32篇
  2007年   39篇
  2006年   32篇
  2005年   36篇
  2004年   21篇
  2003年   21篇
  2002年   13篇
  2001年   1篇
  2000年   1篇
  1998年   2篇
  1995年   1篇
  1994年   1篇
排序方式: 共有555条查询结果,搜索用时 15 毫秒
531.
532.
Marine Bacteroidetes that degrade polysaccharides contribute to carbon cycling in the ocean. Organic matter, including glycans from terrestrial plants, might enter the oceans through rivers. Whether marine bacteria degrade structurally related glycans from diverse sources including terrestrial plants and marine algae was previously unknown. We show that the marine bacterium Flavimarina sp. Hel_I_48 encodes two polysaccharide utilization loci (PULs) which degrade xylans from terrestrial plants and marine algae. Biochemical experiments revealed activity and specificity of the encoded xylanases and associated enzymes of these PULs. Proteomics indicated that these genomic regions respond to glucuronoxylans and arabinoxylans. Substrate specificities of key enzymes suggest dedicated metabolic pathways for xylan utilization. Some of the xylanases were active on different xylans with the conserved β-1,4-linked xylose main chain. Enzyme activity was consistent with growth curves showing Flavimarina sp. Hel_I_48 uses structurally different xylans. The observed abundance of related xylan-degrading enzyme repertoires in genomes of other marine Bacteroidetes indicates similar activities are common in the ocean. The here presented data show that certain marine bacteria are genetically and biochemically variable enough to access parts of structurally diverse xylans from terrestrial plants as well as from marine algal sources.  相似文献   
533.
534.
Many genetic manipulations are limited by difficulty in obtaining adequate levels of protein expression. Bioinformatic and experimental studies have identified nucleotide sequence features that may increase expression, however it is difficult to assess the relative influence of these features. Zebrafish embryos are rapidly injected with calibrated doses of mRNA, enabling the effects of multiple sequence changes to be compared in vivo. Using RNAseq and microarray data, we identified a set of genes that are highly expressed in zebrafish embryos and systematically analyzed for enrichment of sequence features correlated with levels of protein expression. We then tested enriched features by embryo microinjection and functional tests of multiple protein reporters. Codon selection, releasing factor recognition sequence and specific introns and 3′ untranslated regions each increased protein expression between 1.5- and 3-fold. These results suggested principles for increasing protein yield in zebrafish through biomolecular engineering. We implemented these principles for rational gene design in software for codon selection (CodonZ) and plasmid vectors incorporating the most active non-coding elements. Rational gene design thus significantly boosts expression in zebrafish, and a similar approach will likely elevate expression in other animal models.  相似文献   
535.
536.
Mixed hydrogels based on natural, biodegradable and biocompatible polysaccharides, such as cellulose (C) and chondroitin sulphate (CS) in various mixing ratios were prepared by a crosslinking technique and characterized by swelling behaviour, FTIR spectroscopy, scanning electron microscopy, toxicity and biocompatibility tests.The mixed cellulose/chondroitin sulphate hydrogels have been loaded with 7-[2-nitroxiacetyl-oxy-3-(4-acetyl-amino-phenoxy)-propyl]-8-morpholino-1,3-dimethyl-xanthine, a novel nitric oxide donor compound with a lower toxicity and a higher anti-inflammatory activity than its parent molecules, paracetamol and theophylline. Swelling and release kinetics have been also studied. It has been established that an increase of CS content in hydrogels composition leads to a higher swelling ratio for all formulations and to a decreased released amount of nitric oxide donor compound. It has been found that the swelling occurs by an anomalous swelling mechanism, while the release of nitric oxide donor compound follows a diffusion controlled mechanism.  相似文献   
537.
A new and exciting biosensing avenue based on assessment of the non-monotonous, concentration dependent effect of pore formation is discussed. A novel kinetic model is advanced to relate surface plasmon resonance (SPR) data with actual concentrations of interacting partners. Lipid modified L1 sensor chip provide the accessible platform for SPR exploration of peptide–membrane interaction, with POPC and melittin as model systems. We show that quantitative assessment of the interaction between an antimicrobial peptide and lipid modified sensors is capable to provide both sensing avenues and detailed mechanistic insights into effects of pore-forming compounds. The proposed model combined with appropriate design of the experimental protocol adds a new depth to the classic SPR investigation of peptide–lipid interaction offering a quantitative platform for detection, improved understanding of the manifold facets of the interaction and for supporting the controlled design of novel antimicrobial compounds. This biosensing approach can be applied to an entire set of pore-forming compounds including antimicrobial peptides and exo-toxins.  相似文献   
538.
The activity of ERK2, an essential component of MAP-kinase pathway, is under the strict control of various effector proteins. Despite numerous efforts, no crystal structure of ERK2 complexed with such partners has been obtained so far. PTP-SL is a major regulator of ERK2 activity. To investigate the ERK2–PTP-SL complex we used a combined method based on cross-linking, MALDI-TOF analysis, isothermal titration calorimetry, molecular modeling and docking. Hence, new insights into the stoichiometry, thermodynamics and interacting regions of the complex are obtained and a structural model of ERK2-PTP-SL complex in a state consistent with PTP-SL phosphatase activity is developed incorporating all the experimental constraints available at hand to date. According to this model, part of the N-terminal region of PTP-SL has propensity for intrinsic disorder and becomes structured within the complex with ERK2. The proposed model accounts for the structural basis of several experimental findings such as the complex-dissociating effect of ATP, or PTP-SL blocking effect on the ERK2 export to the nucleus. A general observation emerging from this model is that regions involved in substrate binding in PTP-SL and ERK2, respectively are interacting within the interface of the complex.  相似文献   
539.
540.
Phosphoketolases (PKs) are large thiamine pyrophosphate (TPP)-dependent enzymes playing key roles in a number of essential pathways of carbohydrate metabolism. The putative PK genes of Lactococcus lactis (Ll) and Leuconostoc mesenteroides (Lm) were cloned in a prokaryotic vector, and the encoded proteins were expressed and purified yielding high purity proteins termed PK-Ll and PK-Lm, respectively. Similarly, the PK gene of Pseudomonas aeruginosa was expressed, and the corresponding protein (PK-Pa) was purified to homogeneity. The amino acid sequences predicted on the basis of genes’ nucleotide sequences were confirmed by mass spectrometry and display low relative similarities. Circular dichroism (CD) spectra of these proteins predict higher α-helix than β-strand contents. In addition, it is predicted that PK-Ll contains tightly packed domains. Enzymatic analysis showed that all three recombinant proteins, despite their dissimilar amino acid sequences, are active PKs and accept both xylulose 5-phosphate (X5P) and fructose 6-phosphate (F6P) as substrates. However, they display substantially higher preference for X5P than for F6P. Kinetic measurements indicated that PK-Pa has the lowest K m values for X5P and F6P suggesting the highest capacity for substrate binding. PK-Ll has the largest k cat values for both substrates. Nevertheless, in terms of substrate specificity constant, PK-Pa has been found to be the most active PK against X5P. Structural models for all three analysed PKs predict similar folds in spite of amino acid sequence dissimilarities and contribute to understanding the enzymatic peculiarities of PK-Pa compared to PK-Ll and PK-Lm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号