首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   358篇
  免费   23篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   5篇
  2018年   6篇
  2017年   6篇
  2016年   7篇
  2015年   14篇
  2014年   16篇
  2013年   28篇
  2012年   19篇
  2011年   16篇
  2010年   25篇
  2009年   24篇
  2008年   13篇
  2007年   12篇
  2006年   14篇
  2005年   15篇
  2004年   16篇
  2003年   6篇
  2002年   5篇
  2001年   6篇
  2000年   5篇
  1999年   4篇
  1998年   9篇
  1997年   12篇
  1996年   5篇
  1995年   9篇
  1994年   3篇
  1993年   7篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   7篇
  1987年   1篇
  1986年   3篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   16篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   6篇
  1976年   3篇
  1975年   3篇
  1972年   1篇
  1971年   1篇
排序方式: 共有381条查询结果,搜索用时 15 毫秒
331.
The phylogenetic status of arthropods, as inferred from 18S rRNA sequences   总被引:16,自引:4,他引:12  
Partial 18S rRNA sequences of five chelicerate arthropods plus a crustacean, myriapod, insect, chordate, echinoderm, annelid, and platyhelminth were compared. The sequence data were used to infer phylogeny by using a maximum-parsimony method, an evolutionary-distance method, and the evolutionary-parsimony method. The phylogenetic inferences generated by maximum-parsimony and distance methods support both monophyly of the Arthropoda and monophyly of the Chelicerata within the Arthropoda. These results are congruent with phylogenies based on rigorous cladistic analyses of morphological characters. Results support the inclusion of the Arthropoda within a spiralian or protostome coelomate clade that is the sister group of a deuterostome clade, refuting the hypothesis that the arthropods represent the "primitive" sister group of a protostome coelomate clade. Bootstrap analyses and consideration of all trees within 1% of the length of the most parsimonious tree suggest that relationships between the nonchelicerate arthropods and relationships within the chelicerate clade cannot be reliably inferred with the partial 18S rRNA sequence data. With the evolutionary-parsimony method, support for monophyly of the Arthropoda is found in the majority of the combinations analyzed if the coelomates are used as "outgroups." Monophyly of the Chelicerata is supported in most combinations assessed. Our analyses also indicate that the evolutionary-parsimony method, like distance and parsimony, may be biased by taxa with long branches. We suggest that a previous study's inference of the Arthropoda as paraphyletic may be the result of (a) having two few arthropod taxa available for analysis and (b) including long-branched taxa.   相似文献   
332.
333.
Effects of context on judgements of odor intensities in humans   总被引:2,自引:2,他引:0  
This study evaluated whether the intensity of previously smelled odors could unintentionally influence the subsequent judgement of odor intensity. The predicted context effect was based on the adaptation- level theory. Before and 25 min after either WEAK or STRONG biasing odor concentrations, 51 subjects were required to rate the intensity of 10 different odor concentrations of California Orange Oil. After the WEAK bias, subjects judged the odor intensity as being stronger than they did after the STRONG bias. Thus the intensity of odors smelled 25 min earlier can unintentionally influence subsequent odor intensity judgement. The findings are discussed in the light of two alternative explanations, namely, a central implicit memory process and a stimulus- level-based change at the peripheral level.   相似文献   
334.
335.
Climate change, desertification, salinisation of soils and the changing hydrology of the Earth are creating or modifying microbial habitats at all scales including the oceans, saline groundwaters and brine lakes. In environments that are saline or hypersaline, the biodegradation of recalcitrant plant and animal polysaccharides can be inhibited by salt-induced microbial stress and/or by limitation of the metabolic capabilities of halophilic microbes. We recently demonstrated that the chitinolytic haloarchaeon Halomicrobium can serve as the host for an ectosymbiont, nanohaloarchaeon ‘Candidatus Nanohalobium constans’. Here, we consider whether nanohaloarchaea can benefit from the haloarchaea-mediated degradation of xylan, a major hemicellulose component of wood. Using samples of natural evaporitic brines and anthropogenic solar salterns, we describe genome-inferred trophic relations in two extremely halophilic xylan-degrading three-member consortia. We succeeded in genome assembly and closure for all members of both xylan-degrading cultures and elucidated the respective food chains within these consortia. We provide evidence that ectosymbiontic nanohaloarchaea is an active ecophysiological component of extremely halophilic xylan-degrading communities (although by proxy) in hypersaline environments. In each consortium, nanohaloarchaea occur as ectosymbionts of Haloferax, which in turn act as scavenger of oligosaccharides produced by xylan-hydrolysing Halorhabdus. We further obtained and characterised the nanohaloarchaea–host associations using microscopy, multi-omics and cultivation approaches. The current study also doubled culturable nanohaloarchaeal symbionts and demonstrated that these enigmatic nano-sized archaea can be readily isolated in binary co-cultures using an appropriate enrichment strategy. We discuss the implications of xylan degradation by halophiles in biotechnology and for the United Nation's Sustainable Development Goals.  相似文献   
336.
337.
338.
We have amplified, by the polymerase chain reaction, and have sequenced the D-loop region of the mitochondrial DNA from the sperm whale (Physeter macrocephalus). The sperm whale D-loop was aligned with D- loop sequences from four other cetaceans (Commerson's dolphin, orca, fin whale, and minke whale) and an out-group (cow). This alignment showed the sperm whale sequence to be larger than that of other cetaceans. In addition, some sequence blocks were highly conserved among all six species, suggesting roles in the functioning of mitochondrial DNA. Other blocks that were previously reported to be well conserved among cetaceans showed little sequence conservation with the sperm whale D-loop, which argues against the functional importance of these sequence blocks in cetaceans.   相似文献   
339.
Central processing of inertial sensory information about head attitude and motion in space is crucial for motor control. Vestibular signals are coded relative to a non-inertial system, the head, that is virtually continuously in motion. Evidence for transformation of vestibular signals from head-fixed sensory coordinates to gravity-centered coordinates have been provided by studies of the vestibulo-ocular reflex. The underlying central processing depends on otolith afferent information that needs to be resolved in terms of head translation related inertial forces and head attitude dependent pull of gravity. Theoretical solutions have been suggested, but experimental evidence is still scarce. It appears, along these lines, that gaze control systems are intimately linked to motor control of head attitude and posture.  相似文献   
340.
Complete coding regions of the 18S rRNA gene of an enteropneust hemichordate and an echinoid and ophiuroid echinoderm were obtained and aligned with 18S rRNA gene sequences of all major chordate clades and four outgroups. Gene sequences were analyzed to test morphological character phylogenies and to assess the strength of the signal. Maximum- parsimony analysis of the sequences fails to support a monophyletic Chordata; the urochordates form the sister taxon to the hemichordates, and together this clade plus the echinoderms forms the sister taxon to the cephalochordates plus craniates. Decay, bootstrap, and tree-length distribution analyses suggest that the signal for inference of dueterostome phylogeny is weak in this molecule. Parsimony analysis of morphological plus molecular characters supports both monophyly of echinoderms plus enteropneust hemichordates and a sister group relationship of this clade to chordates. Evolutionary parsimony does not support chordate monophyly. Neighbor-joining, Fitch-Margoliash, and maximum-likelihood analyses support a chordate lineage that is the sister group to an echinoderm-plus-hemichordate lineage. The results illustrate both the limitations of the 18S rRNA molecule alone for high- level phylogeny inference and the importance of considering both molecular and morphological data in phylogeny reconstruction.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号