首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8388篇
  免费   647篇
  国内免费   2篇
  2023年   56篇
  2022年   57篇
  2021年   197篇
  2020年   159篇
  2019年   175篇
  2018年   217篇
  2017年   212篇
  2016年   317篇
  2015年   482篇
  2014年   479篇
  2013年   643篇
  2012年   753篇
  2011年   619篇
  2010年   444篇
  2009年   401篇
  2008年   485篇
  2007年   522篇
  2006年   442篇
  2005年   399篇
  2004年   388篇
  2003年   332篇
  2002年   339篇
  2001年   93篇
  2000年   67篇
  1999年   71篇
  1998年   79篇
  1997年   66篇
  1996年   52篇
  1995年   60篇
  1994年   51篇
  1993年   44篇
  1992年   39篇
  1991年   41篇
  1990年   24篇
  1989年   26篇
  1988年   32篇
  1987年   15篇
  1986年   21篇
  1985年   13篇
  1984年   14篇
  1983年   16篇
  1982年   16篇
  1981年   15篇
  1980年   6篇
  1979年   8篇
  1978年   10篇
  1977年   3篇
  1975年   5篇
  1974年   10篇
  1962年   3篇
排序方式: 共有9037条查询结果,搜索用时 15 毫秒
121.
The spatial arrangement of perennial vegetation is critical for ecosystem function in drylands. While much is known about how vegetation patches respond to grazing and abiotic conditions, the size dynamics of individual plants is mostly limited to theoretical studies. We measured the size distribution (mean, variance, skewness) and density of individual grasses, and grass species composition at 451 sites spanning a range of grazing intensities across three broad vegetation communities in semi-arid eastern Australia. We assessed the relative role of grazing by livestock (cattle and sheep), native (kangaroos) and introduced (rabbits) free ranging herbivores, and several environmental measures (productivity, diversity, composition and groundstorey plant cover) on the size distribution and density of individual grasses. We found mean grass size and density were more sensitive to shifts in grazing intensity and environmental conditions than size variance or the frequency of the smallest individuals (skewness), and shifts were mostly driven by site productivity and cattle and kangaroo grazing. Sheep grazing only reduced mean grass size, and rabbit grazing had no consistent effects. Importantly, we found that site productivity and species composition altered the impacts of grazing on grass density and size distribution. For example, increasing cattle grazing led to larger grasses in low productivity sites. It also led to larger, denser, more variable-sized grasses among grass species from sites with finer soil texture. Increasing kangaroo grazing led to smaller, denser individuals among grass species from sites with coarse soil texture. At high diversity sites kangaroo grazing led to denser, more homogenised grass sizes with a lower frequency of small individuals. Understanding the in situ response of individual plant sizes gives us insights into the processes driving shifts in perennial vegetation patchiness, improving our ability to predict how the spatial arrangement of ecosystems might change under global change scenarios.  相似文献   
122.
The rod-shaped cells of Myxococcus xanthus, a Gram-negative deltaproteobacterium, differentiate to environmentally resistant spores upon starvation or chemical stress. The environmental resistance depends on a spore coat polysaccharide that is synthesised by the ExoA-I proteins, some of which are part of a Wzx/Wzy-dependent pathway for polysaccharide synthesis and export; however, key components of this pathway have remained unidentified. Here, we identify and characterise two additional loci encoding proteins with homology to enzymes involved in polysaccharide synthesis and export, as well as sugar modification and show that six of the proteins encoded by these loci are essential for the formation of environmentally resistant spores. Our data support that MXAN_3260, renamed ExoM and MXAN_3026, renamed ExoJ, are the Wzx flippase and Wzy polymerase, respectively, responsible for translocation and polymerisation of the repeat unit of the spore coat polysaccharide. Moreover, we provide evidence that three glycosyltransferases (MXAN_3027/ExoK, MXAN_3262/ExoO and MXAN_3263/ExoP) and a polysaccharide deacetylase (MXAN_3259/ExoL) are important for formation of the intact spore coat, while ExoE is the polyisoprenyl-phosphate hexose-1-phosphate transferase responsible for initiating repeat unit synthesis, likely by transferring N-acetylgalactosamine-1-P to undecaprenyl-phosphate. Together, our data generate a more complete model of the Exo pathway for spore coat polysaccharide biosynthesis and export.  相似文献   
123.
Ovule primordia formation is a complex developmental process with a strong impact on the production of seeds. In Arabidopsis this process is controlled by a gene network, including components of the signalling pathways of auxin, brassinosteroids (BRs) and cytokinins. Recently, we have shown that gibberellins (GAs) also play an important role in ovule primordia initiation, inhibiting ovule formation in both Arabidopsis and tomato. Here we reveal that BRs also participate in the control of ovule initiation in tomato, by promoting an increase on ovule primordia formation. Moreover, molecular and genetic analyses of the co‐regulation by GAs and BRs of the control of ovule initiation indicate that two different mechanisms occur in tomato and Arabidopsis. In tomato, GAs act downstream of BRs. BRs regulate ovule number through the downregulation of GA biosynthesis, which provokes stabilization of DELLA proteins that will finally promote ovule primordia initiation. In contrast, in Arabidopsis both GAs and BRs regulate ovule number independently of the activity levels of the other hormone. Taken together, our data strongly suggest that different molecular mechanisms could operate in different plant species to regulate identical developmental processes even, as for ovule primordia initiation, if the same set of hormones trigger similar responses, adding a new level of complexity.  相似文献   
124.
125.
126.
Molecular and Cellular Biochemistry - Intravascular hemolysis, a major manifestation of sickle cell disease (SCD) and other diseases, incurs the release of hemoglobin and heme from red blood cells,...  相似文献   
127.
128.
Firewood and charcoal are used on a daily basis both in rural areas and in cities. This type of energy is produced by one of the most ancient traditional methods, known as coppice, which harvest tree sprouts. There is controversy about its effects on forests: it preserves populations and tree cover of species used, but reduces density, inhibits sexual reproduction and generates genetic erosion. We inquired if it was possible to identify a loss of genetic diversity in oak populations traditionally used for charcoal by the Zongolica Nahuas in Veracruz state, Mexico. We studied populations of Quercus laurina, Quercus calophylla and Quercus rugosa in three different altitudes. Molecular analysis with eight nuclear codominant microsatellites was performed to determine the diversity, structure and gene flow of these species. Results for Q. laurina were Na = 8.458, I = 1.766, Ho = 0.679, polymorphism = 100%, Fis = 0.079, with intraindividual variation of 81.55%. For Q. calophylla: Na = 7.250, I = 1.563, Ho = 0.646, polymorphism = 91.67%, Fis = 0.083, with intraindividual variation of 83.80%. For Q. rugosa: Na = 6.958, I = 1.510, Ho = 0.574, polymorphism = 91.67%, Fis = 0.204, with intraindividual variation of 81.99%; this species shows signals of an early genetic isolation process. Our findings indicate that Quercus genetic diversity for the three species is high and comparable with oak species in Mexico and worldwide. We conclude that at the present, coppice is preserving a historical diversity in adult trees kept alive through sprouting. Nonetheless, problems with coppice systems elsewhere, unregulated harvesting and expansion of pine plantation in the region suggest that further studies, hand in hand with a landscape management approach that improve charcoal and firewood production, may be valuable for Sierra de Zongolica genetic biodiversity conservation.  相似文献   
129.
The Atlantic chub mackerel Scomber colias and the blue jack mackerel Trachurus picturatus are two abundant species in the Macaronesia region which includes the archipelago of Madeira, Portugal. Both are key species in the trophic web, being important prey for several local top predators, such as seabirds and marine mammals. Nonetheless, little is known about their feeding ecology in oceanic environments. In this study, the authors describe the seasonal variation in the diet of S. colias and T. picturatus in the oceanic region of Madeira throughout a year. Visual inspection of stomach contents revealed that S. colias fed on a broader range of prey groups than T. picturatus, but for both species, zooplankton (particularly calanoid copepods) and fish were the most important food items. The diet of S. colias included a higher proportion of fish, namely Atlantic saury Scomberesox saurus and S. colias, than that of T. picturatus, that included mostly the longspine snipefish Macroramphosus scolopax. T. picturatus consumed a higher proportion of decapods and other copepods. Seasonal variation was found in the diet of both species, with zooplanktonic species being more important in colder months (February to April) for S. colias and during warm months (May to October) for T. picturatus. Their diet in other seasons was dominated by fish. Although they consume similar prey, carbon and nitrogen stable isotope analysis of muscle of S. colias and T. picturatus showed little overlap in their diets, and T. picturatus showed higher δ15N and a narrower isotopic niche.  相似文献   
130.
Environmental conditions can modify the intensity and sign of ecological interactions. The stress gradient hypothesis (SGH) predicts that facilitation becomes more important than competition under stressful conditions. To properly test this hypothesis, it is necessary to account for all (not a subset of) interactions occurring in the communities and consider that species do not interact at random but following a specific pattern. We aim to assess elevational changes in facilitation, in terms of species richness, frequency and intensity of the interaction as a function of the evolutionary relatedness between nurses and their associated species. We sampled nurse and their facilitated plant species in two 1000–2000 m. elevation gradients in Mediterranean Chile where low temperature imposes a mortality filter on seedlings. We first estimated the relative importance of facilitation as a mechanism adding new species to communities distributed along these gradients. We then tested whether the frequency and intensity of facilitation increases with elevation, taking into account the evolutionary relatedness of the nurse species and the facilitated species. We found that nurses increase the species richness of the community by up to 35%. Facilitative interactions are more frequent than competitive interactions (56% versus 44%) and facilitation intensity increased with elevation for interactions involving distantly related lineages. Our results highlight the importance of including an evolutionary dimension in the study of facilitation to have a clearer picture of the mechanisms enabling species to coexist and survive under stressful conditions. This knowledge is especially relevant to conserve vulnerable and threatened communities facing new climate scenarios, such as those located in Mediterranean-type ecosystems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号