首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3275篇
  免费   193篇
  2023年   16篇
  2022年   38篇
  2021年   93篇
  2020年   41篇
  2019年   75篇
  2018年   110篇
  2017年   117篇
  2016年   166篇
  2015年   170篇
  2014年   221篇
  2013年   246篇
  2012年   293篇
  2011年   306篇
  2010年   199篇
  2009年   115篇
  2008年   222篇
  2007年   191篇
  2006年   157篇
  2005年   181篇
  2004年   117篇
  2003年   128篇
  2002年   85篇
  2001年   15篇
  2000年   11篇
  1999年   15篇
  1998年   17篇
  1997年   15篇
  1996年   5篇
  1995年   14篇
  1994年   12篇
  1993年   11篇
  1992年   10篇
  1991年   5篇
  1990年   2篇
  1989年   6篇
  1988年   7篇
  1987年   4篇
  1985年   3篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1979年   4篇
  1968年   1篇
  1967年   1篇
  1957年   1篇
  1955年   1篇
  1954年   2篇
  1948年   1篇
  1945年   1篇
排序方式: 共有3468条查询结果,搜索用时 328 毫秒
151.
Ammonium salt of N-(dithiocarboxy)sarcosine (DTCS) chelated to ferrous salt was tested as an NO-metric spin trap at room temperature for ex vivo measurement of (.)NO production in murine endotoxaemia. In a chemically defined in vitro model system EPR triplet signals of NO-Fe(DTCS)(2) were observed for as long as 3 hours, only if samples were reduced with sodium dithionite. This procedure was not necessary for the ex vivo detection of (.)NO in endotoxaemic liver homogenates at X-band or in the whole intact organs at S-band, whereas only a weak signal was observed in endotoxaemic lung. These results suggest that in endotoxaemia not only high level of (.)NO, but also the redox properties of liver and lung might determine the formation of complexes of (.)NO with a spin trap. Nevertheless, both S- and X-band EPR spectroscopy is suitable for (.)NO-metry at room temperature using Fe(DTCS)(2) as the spin trapping agent. In particular, S-band EPR spectroscopy enables the detection of (.)NO production in a whole organ, such as murine liver.  相似文献   
152.
The phototropins constitute an important class of plant photoreceptor kinases that control a range of physiological responses, including phototropism, light-directed chloroplast movement, and light-induced stomatal opening. The LOV2 domain of phototropin binds a molecule of flavin mononucleotide (FMN) and undergoes a photocycle involving light-driven covalent adduct formation between a conserved cysteine residue and the C(4a) atom of FMN. This product state promotes C-terminal kinase activation and downstream signal transduction. Here, we report the primary photophysics and photochemistry of LOV2 domains of phototropin 1 of Avena sativa (oat) and of the phy3 photoreceptor of Adiantum capillus-veneris (maidenhair fern). In agreement with earlier reports [Swartz, T. E., et al. (2001) J. Biol. Chem. 276, 36493-36500], we find that the FMN triplet state is the reactive species from which the photoreaction occurs. We demonstrate that the triplet state is the primary photoproduct in the LOV2 photocycle, generated at 60% efficiency. No spectroscopically distinguishable intermediates precede the FMN triplet on the femtosecond to nanosecond time scale, indicating that it is formed directly via intersystem crossing (ISC) from the singlet state. Our results indicate that the majority of the FMN triplets in the LOV2 domain exist in the protonated form. We propose a reaction mechanism that involves excited-state proton transfer, on the nanosecond time scale or faster, from the sulfhydryl group of the conserved cysteine to the N5 atom of FMN. This event promotes adduct formation by increasing the electrophilicity of C(4a) and subsequent nucleophilic attack by the cysteine's thiolate anion. Comparison to free FMN in solution shows that the protein environment of LOV2 increases the ISC rate of FMN by a factor of 2.4, thus improving the yield of the cysteinyl-flavin adduct and the efficiency of phototropin-mediated signaling processes.  相似文献   
153.
Beta2microglobulin (beta2m) is the major protein component of the fibrillar amyloid deposits isolated from patients diagnosed with dialysis-related amyloidosis (DRA). While investigating the molecular mechanism of amyloid fibril formation by beta2m, we found that the beta2m C-terminal peptide of 28 residues (cbeta2m) itself forms amyloid fibrils. When viewed by electron microscopy, cbeta2m aggregates appear as elongated unbranched fibers, the morphology typical for amyloids. Cbeta2m fibers stain with Congo red and show apple-green birefringence in polarized light, characteristic of amyloids. The observation that the beta2m C-terminal fragment readily forms amyloid fibrils implies that beta2m amyloid fibril formation proceeds via interactions of amyloid forming segments, which become exposed when the beta2m subunit is partially unfolded.  相似文献   
154.
Activation of skeletal muscle ryanodine receptors (RyRs) by suramin and disulfonic stilbene derivatives (Diisothiocyanostilbene-2',2'-disulfonic acid (DIDS), 4,4'-dibenzamidostilbene-2,2'-disulfonic acid (DBDS),and 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS)) was investigated using planar bilayers. One reversible and two nonreversible mechanisms were identified. K(a) for reversible activation (approximately 100 micro M) depended on cytoplasmic [Ca(2+)] and the bilayer composition. Replacement of neutral lipids by negative phosphatidylserine increased K(a) fourfold, suggesting that reversible binding sites are near the bilayer surface. Suramin and the stilbene derivatives adsorbed to neutral bilayers with maximal mole fractions between 1-8% and with affinities approximately 100 micro M but did not adsorb to negative lipids. DIDS activated RyRs by two nonreversible mechanisms, distinguishable by their disparate DIDS binding rates (10(5) and 60 M(-1) s(-1)) and actions. Both mechanisms activated RyRs via several jumps in open probability, indicating several DIDS binding events. The fast and slow mechanisms are independent of each other, the reversible mechanism and ATP binding. The fast mechanism confers DIDS sensitivity approximately 1000-fold greater than previously reported, increases Ca(2+) activation and increases K(i) for Ca(2+)/Mg(2+) inhibition 10-fold. The slow mechanism activates RyRs in the absence of Ca(2+) and ATP, increases ATP activation without altering K(a), and slightly increases activity at pH < 6.5. These findings explain how different types of DIDS activation are observed under different conditions.  相似文献   
155.
The modulation of calcium channels by metabotropic glutamate receptors (mGluRs) is a key event in the fine-tuning of neurotransmitter release. Here we report that, in cerebrocortical nerve terminals of adult rats, the inhibition of glutamate release is mediated by mGluR7. In this preparation, the major component of glutamate release is supported by P/Q-type Ca2+ channels (72.7%). However, mGluR7 selectively reduced the release component that is associated with N-type Ca2+ channels (29.9%). Inhibition of P/Q channels by mGluR7 is not masked by the higher efficiency of these channels in driving glutamate release when compared with N-type channels. Thus, activation of mGluR7 failed to reduce the release associated with P/Q channels when the extracellular calcium concentration, ([Ca2+]o), was reduced from 1.3 to 0.5 mm. Through Ca2+ imaging, we show that Ca2+ channels are distributed in a heterogeneous manner in individual nerve terminals. Indeed, in this preparation, nerve terminals were observed that contain N-type (31.1%; conotoxin GVIA-sensitive) or P/Q-type (64.3%; agatoxin IVA-sensitive) channels or that were insensitive to these two toxins (4.6%). Interestingly, the great majority of the responses to l-AP4 (95.4%) were observed in nerve terminals containing N-type channels. This specific co-localization of mGluR7 and N-type Ca2+-channels could explain the failure of the receptor to inhibit the P/Q channel-associated release component and also reveal the existence of specific targeting mechanisms to localize the two proteins in the same nerve terminal subset.  相似文献   
156.
157.
It was found that wild type yeast Pichia pastoris can tolerate vanadate concentration as high as 25 mM in the growth medium. Moreover, four vanadate-resistant P. pastoris strains designated JC100/1, JC100/3, JC100/9 and JC100/15 exhibiting tolerance up to 150 mM vanadate were selected. Growth of P. pastoris was correlated with vanadate to vanadyl reduction and its accumulation in the growth medium. In two selected strains, JC100/9 and JC100/15, protein kinase A activity was much higher in comparison to the wild type strain even without vanadate addition to the growth medium. Moreover, in the presence of vanadate, protein kinase A activity was significantly increased in the wild type and the vanadate-resistant JC100/1 and JC100/3 strains. It was also found that phosphorylation of a 40 kDa protein associated with ribosomes occured in all vanadate-resistant strains from the logarithmic, while in the wild type strain from the stationary growth phase. From the presented results it can be concluded that a protein kinase A signalling pathway(s) might be involved in the mechanism of P. pastoris vanadate resistance. The results also indicate a possible role of the 40 kDa protein in protection of P. pastoris against vanadate toxicity.  相似文献   
158.
159.
The paper presents the efficiency of phenol removal (concentrations from 500 to 2000 mg/l) by fungi isolated from activated sludge purifying wastewater with high phenol concentration. Five fungal strains were isolated and identified. All isolated strains appeared to be Moniliales from the class of Fungi Imperfecti (Candida sp., Monosporium sp., Trichosporon sp.) Stationary cultures of the individual strains and their mixtures were maintained in Czapek medium containing phenol in concentration from 500 to 2000 mg/l. All isolated strains (except one) were capable of utilising phenol up to a concentration of 1500 mg/l. Depending on investigated strain, phenol in concentration of 500 mg/l was decomposed during 4-25 days, 750 mg/l during 4-14 days. After 20 days, a phenol decline of 1000 mg/l was observed. After 16 days, the phenol decline was 1500 mg/l. Higher phenol concentrations (1500 mg/l) were utilised only by a mixture of two strains. The investigated fungal strains showed good efficiency of phenol removal from high phenol concentration in wastewater and they may be proposed for use in the process of purifying wastewater of this type.  相似文献   
160.
Previous studies of structure-activity of biphalin defined fragments which expressed the full biological potency of the parent compound. The most simple fragment was Tyr-D-Ala-Gly-Phe-NH-NH<--X, where X=Phe, but it also could be other hydrophobic amino acids. This paper presents data that replacement of the phenylalanine with a dansyl (X=DNS) groups gives an analogue (AA2016) that fully preserves the high affinity of the initial analogue for both mu and delta opioid receptors. In the tail flick test in rats, intrathecal injection of the compound produces strong antinociception, comparable to the parent biphalin. Because AA2016 contains a strong fluorescent group, it can be a very useful tool for prospective studies in vivo, including biological barrier permeability, tissue distribution, metabolism and receptor-ligand complex formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号