首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   3篇
  2021年   1篇
  2020年   2篇
  2018年   1篇
  2017年   1篇
  2016年   7篇
  2015年   3篇
  2014年   6篇
  2013年   9篇
  2012年   7篇
  2011年   5篇
  2010年   4篇
  2009年   3篇
  2008年   8篇
  2007年   2篇
  2006年   5篇
  2005年   12篇
  2004年   11篇
  2003年   4篇
  2002年   2篇
  2001年   5篇
  2000年   7篇
  1999年   3篇
  1998年   5篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1983年   3篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1974年   2篇
  1973年   1篇
  1972年   3篇
  1971年   1篇
  1970年   6篇
  1969年   2篇
  1968年   3篇
  1967年   2篇
  1966年   1篇
排序方式: 共有161条查询结果,搜索用时 125 毫秒
41.
Mechanism of heme degradation by heme oxygenase   总被引:5,自引:0,他引:5  
Heme oxygenase catalyzes the three step-wise oxidation of hemin to alpha-biliverdin, via alpha-meso-hydroxyhemin, verdoheme, and ferric iron-biliverdin complex. This enzyme is a simple protein which does not have any prosthetic groups. However, heme and its two metabolites, alpha-meso-hydroxyhemin and verdoheme, combine with the enzyme and activate oxygen during the heme oxygenase reaction. In the conversion of hemin to alpha-meso-hydroxyhemin, the active species of oxygen is Fe-OOH, which self-hydroxylates heme to form alpha-meso-hydroxyhemin. This step determines the alpha-specificity of the reaction. For the formation of verdoheme and liberation of CO from alpha-meso-hydroxyhemin, oxygen and one reducing equivalent are both required. However, the ferrous iron of the alpha-meso-hydroxyheme is not involved in the oxygen activation and unactivated oxygen is reacted on the 'activated' heme edge of the porphyrin ring. For the conversion of verdoheme to the ferric iron-biliverdin complex, both oxygen and reducing agents are necessary, although the precise mechanism has not been clear. The reduction of iron is required for the release of iron from the ferric iron-biliverdin complex to complete total heme oxygenase reaction.  相似文献   
42.
Carbon monoxide (CO) is produced during the heme catabolism by heme oxygenase. In brain or blood vessels, CO functions as a neurotransmitter or an endothelial-derived relaxing factor. To verify whether crystallographically proposed CO-trapping sites of rat and cyanobacterial heme oxygenase-1 really work, heme catabolism by heme oxygenase-1 from rat and cyanobacterial Synechocystis sp. PCC 6803 has been scrutinized in the presence of 2-propanol. If 2-propanol occupies the trapping sites, formation of CO-bound verdoheme should be enhanced. Although effects of 2-propanol on the rat heme oxygenase-1 reaction were obscure, the reaction of cyanobacterial enzyme in the presence of NADPH/ferredoxin reductase/ferredoxin was apparently affected. Relative amount of CO-verdoheme versus CO-free verdoheme detected by optical absorption spectra increased as the equivalent of 2-propanol increased, thereby supporting indirectly that the hydrophobic cavity in cyanobacterial enzyme traps CO to reduce CO inhibition of verdoheme degradation.  相似文献   
43.
Phycobiliproteins, light-harvesting proteins in cyanobacteria, red algae, and cryptophytes, contain phycobilin pigments. Phycobilins are synthesized from biliverdin, which is produced by the oxidative cleavage of the heme porphyrin ring catalyzed by heme oxygenase (HO). Two paralogs of ho (ho1 and ho2) have been identified in the genome of the cyanobacterium, Synechocystis sp. PCC 6803. The recombinant proteins of both paralogs (Syn HO-1 and Syn HO-2) possess in vitro heme degradation activity. We have determined the crystal structures of Syn HO-2 in complex with heme (heme-Syn HO-2) and its reduced and NO bound forms. The heme-Syn HO-2 crystal was a nonmerohedral twin, and detwinned diffraction data were used to refine the structure. Although heme-Syn HO-2 shares common folding with other HOs, the C-terminal segment is ordered and turns back to the heme-binding side. Gel-filtration chromatography analysis and molecular packing in the crystal indicate that heme-Syn HO-2 forms a homodimer, in which the C-terminal ordered segments interact with each other. Because Syn HO-2 is a monomer in the apo state, the dimeric interaction may aid in the selection of the reducing partner but likely does not interfere with heme binding. The heme iron is coordinated by a water molecule in the ferric form, but the distal water is absent in the ferrous form. In all of the Syn HO-2 structures, several water molecules form a hydrogen-bond network at the distal hemepocket, which is involved in HO activity. Upon NO binding, the side-chain conformation of Tyr 156 changes. Tyr 156 is located at the hydrophobic cluster, which interrupts the possible H(+) pathway from the molecular surface to the hemepocket. Thus, Tyr 156 may function as a H(+) shuttle by changing conformation.  相似文献   
44.
The aging heart sustains greater injury during ischemia and reperfusion compared to adult hearts. Aging decreases oxidative function in interfibrillar mitochondria (IFM) that reside among the myofibers, while subsarcolemmal mitochondria (SSM), located beneath the plasma membrane, remain unaltered. Aging decreases complex III activity selectively in IFM via alteration of the cytochrome c binding site. With 25 min of global ischemia, complex III activity decreases in SSM and further decreases in IFM in the aging heart. Ischemia leads to a marked decrease in the electron paramagnetic resonance signal of the iron-sulfur protein (ISP) in both SSM and IFM, despite a preserved content of ISP peptide. Thus, ischemia results in a functional decrease in the iron-sulfur center in ISP without subunit peptide loss. In the aging heart, at the onset of reperfusion, IFM contain two tandem defects in the path of electron flow through complex III, providing a likely mechanism for enhanced oxidant production and reperfusion damage.  相似文献   
45.
46.
ObjectivesThe genotype-phenotype correlation of MEFV remains unclear for the familial Mediterranean fever (FMF) patients, especially without canonical MEFV mutations in exon 10. The risk of FMF appeared to be under the influence of other factors in this case. The contribution of HLA polymorphisms to the risk of FMF was examined as strong candidates of modifier genes.MethodsGenotypes of HLA-B and -DRB1 loci were determined for 258 mutually unrelated Japanese FMF patients, who satisfied modified Tel-Hashomer criteria, and 299 healthy controls. The effects of carrier status were evaluated for the risk of FMF by odds ratio (OR). The HLA effects were also assessed for clinical forms of FMF, subsets of FMF with certain MEFV genotypes and responsiveness to colchicine treatment.ResultsThe carriers of B*39:01 were increased in the patients (OR = 3.25, p = 0.0012), whereas those of DRB1*15:02 were decreased (OR = 0.45, p = 0.00050), satisfying Bonferroni’s correction for multiple statistical tests (n = 28, p<0.00179). The protective effect of DRB1*15:02 was completely disappeared in the co-existence of B*40:01. The HLA effects were generally augmented in the patients without a canonical MEFV variant allele M694I, in accordance with the notion that the lower penetrance of the mutations is owing to the larger contribution of modifier genes in the pathogenesis, with a few exceptions. Further, 42.9% of 14 colchicine-resistant patients and 13.5% of 156 colchicine-responders possessed B*35:01 allele, giving OR of 4.82 (p = 0.0041).ConclusionsThe differential effects of HLA class I and class II polymorphisms were identified for Japanese FMF even in those with high-penetrance MEFV mutations.  相似文献   
47.

Background  

Complex regional pain syndrome (CRPS) may occur after trauma, usually to one limb, and is characterized by pain and disturbed blood flow, temperature regulation and motor control. Approximately 25% of cases develop fixed dystonia. Involvement of dysfunctional GABAergic interneurons has been suggested, however the mechanisms that underpin fixed dystonia are still unknown. We hypothesized that dystonia could be the result of aberrant proprioceptive reflex strengths of position, velocity or force feedback.  相似文献   
48.
Limitless reproductive potential is one of the hallmarks of cancer cells. This ability is due to the maintenance of telomeres, erosion of which causes cellular senescence or death. While most cancer cells activate telomerase, a telomere-elongating enzyme, it remains elusive as to why cancer cells often maintain shorter telomeres than the cells in the surrounding normal tissues. Here, we show that forced telomere elongation in cancer cells promotes their differentiation in vivo. We elongated the telomeres of human prostate cancer cells that possess short telomeres by enhancing their telomerase activity. The resulting cells had long telomeres and retained the ability to form tumors in nude mice. Strikingly, these tumors exhibited many duct-like structures and reduced N-cadherin expression, reminiscent of well-differentiated adenocarcinoma. These changes were caused by telomere elongation and not by enhanced telomerase activity. Gene expression profiling revealed that tumor formation was accompanied by the expression of innate immune system-related genes, which have been implicated in maintaining tumor cells in an undifferentiated state and poor-prognosis cancers. In tumors derived from the telomere-elongated cells, upregulation of such gene sets is not observed. Our observations suggest a functional contribution of short telomeres to tumor malignancy by regulation of cancer cell differentiation.  相似文献   
49.
We studied morphologic changes after sublethal high hydrostatic pressure treatment (HPT) of Escherichia coli K-12 strains in which genes related to the cytoskeleton, cell wall, and cell division had been deleted. Some long filamentous and swelling cells were observed in wild-type bacteria, while some spherical, branched, or collapsed cells were observed in deletion mutants. In particular, ΔzapA and ΔrodZ showed distinguished morphologies. ZapA supports FtsZ, a cytoskeletal protein, forming ring with ZapB. RodZ, a cytoskeletal protein, interacts with MreB, also a cytoskeletal protein, and both factors are necessary for maintaining the rod shape of the cell. These results showed that insufficient formation of FtsZ rings induced cell elongation and that insufficient formation of MreB induced a branched and collapsed cell shape. Therefore, the correct formation of the bacteria cytoskeleton by FtsZ rings and MreB is important for keeping normal cell shape during growth after HPT, and the polymerization of cytoskeletal proteins was a critical target of sublethal HPT. These results indicate that sublethal HPT induces bacterial cell morphologic change and provide important information on the role of genes involved in morphogenesis. Therefore, sublethal HPT may be a good tool for studying the morphogenesis of bacterial cells.  相似文献   
50.
RNF144A is involved in protein ubiquitination and functions as an ubiquitin‐protein ligase (E3) via its RING finger domain (RNF144A RING). RNF144A is associated with degradation of heat‐shock protein family A member 2 (HSPA2), which leads to the suppression of breast cancer cell proliferation. In this study, the solution structure of RNF144A RING was determined using nuclear magnetic resonance. Moreover, using a metallochromic indicator, we spectrophotometrically determined the stoichiometry of zinc ions and elucidated that RNF144A RING binds two zinc atoms. This structural analysis provided the position and range of the active site of RNF144A RING at the atomic level, which contributes to the creation of artificial RING fingers having the specific ubiquitin‐conjugating enzyme (E2)‐binding capability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号