首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   661篇
  免费   36篇
  2022年   6篇
  2021年   6篇
  2020年   9篇
  2019年   11篇
  2018年   9篇
  2017年   12篇
  2016年   12篇
  2015年   14篇
  2014年   18篇
  2013年   43篇
  2012年   36篇
  2011年   42篇
  2010年   30篇
  2009年   23篇
  2008年   32篇
  2007年   32篇
  2006年   32篇
  2005年   30篇
  2004年   29篇
  2003年   24篇
  2002年   30篇
  2001年   16篇
  2000年   14篇
  1999年   22篇
  1998年   9篇
  1997年   6篇
  1996年   11篇
  1995年   8篇
  1994年   5篇
  1993年   6篇
  1992年   4篇
  1991年   12篇
  1990年   11篇
  1989年   9篇
  1988年   8篇
  1986年   9篇
  1985年   5篇
  1984年   6篇
  1983年   6篇
  1982年   3篇
  1981年   5篇
  1980年   4篇
  1979年   4篇
  1978年   6篇
  1977年   4篇
  1976年   3篇
  1974年   4篇
  1973年   3篇
  1970年   6篇
  1969年   2篇
排序方式: 共有697条查询结果,搜索用时 406 毫秒
141.
Gamma aminobutyric acid (GABA) is widely known as a neurotransmitter and signal transduction molecule found in vertebrates, plants, and some protozoan organisms. However, the presence of GABA and its role in trypanosomatids is unknown. Here, we report the presence of intracellular GABA and the biochemical characterization of its uptake in Trypanosoma cruzi, the etiological agent of Chagas' disease. Kinetic parameters indicated that GABA is taken up by a single transport system in pathogenic and nonpathogenic forms. Temperature dependence assays showed a profile similar to glutamate transport, but the effect of extracellular cations Na+, K+, and H+ on GABA uptake differed, suggesting a different uptake mechanism. In contrast to reports for other amino acid transporters in T. cruzi, GABA uptake was Na+ dependent and increased with pH, with a maximum activity at pH 8.5. The sensitivity to oligomycin showed that GABA uptake is dependent on ATP synthesis. These data point to a secondary active Na+/GABA symporter energized by Na+‐exporting ATPase. Finally, we show that GABA occurs in the parasite's cytoplasm under normal culture conditions, indicating that it is regularly taken up from the culture medium or synthesized through an still undescribed metabolic pathway.  相似文献   
142.
143.
144.
145.
146.
Cdc7 kinase, conserved from yeasts to human, plays important roles in DNA replication. However, the mechanisms by which it stimulates initiation of DNA replication remain largely unclear. We have analyzed phosphorylation of MCM subunits during cell cycle by examining mobility shift on SDS-PAGE. MCM4 on the chromatin undergoes specific phosphorylation during S phase. Cdc7 phosphorylates MCM4 in the MCM complexes as well as the MCM4 N-terminal polypeptide. Experiments with phospho-amino acid-specific antibodies indicate that the S phase-specific mobility shift is due to the phosphorylation at specific N-terminal (S/T)(S/T)P residues of the MCM4 protein. These specific phosphorylation events are not observed in mouse ES cells deficient in Cdc7 or are reduced in the cells treated with siRNA specific to Cdc7, suggesting that they are mediated by Cdc7 kinase. The N-terminal phosphorylation of MCM4 stimulates association of Cdc45 with the chromatin, suggesting that it may be an important phosphorylation event by Cdc7 for activation of replication origins. Deletion of the N-terminal non-conserved 150 amino acids of MCM4 results in growth inhibition, and addition of amino acids carrying putative Cdc7 target sequences partially restores the growth. Furthermore, combination of MCM4 N-terminal deletion with alanine substitution and deletion of the N-terminal segments of MCM2 and MCM6, respectively, which contain clusters of serine/threonine and are also likely targets of Cdc7, led to an apparent nonviable phenotype. These results are consistent with the notion that the N-terminal phosphorylation of MCM2, MCM4, and MCM6 may play functionally redundant but essential roles in initiation of DNA replication.  相似文献   
147.
Squamous cell carcinoma of the head and neck (SCCHN) cells are poorly recognized in vitro by CTL despite expressing the restricting HLA class I allele and the targeted tumor Ag (TA). Several lines of evidence indicate that the lack of SCCHN cell recognition by CTL reflects defects in targeted TA peptide presentation by HLA class I Ag to CTL because of Ag-processing machinery (APM) dysfunction. First, lack of recognition of SCCHN cells by CTL is associated with marked down-regulation of the IFN-gamma-inducible APM components low-m.w. protein 2, TAP1, TAP2, and tapasin. Second, SCCHN cell recognition by CTL is restored by pulsing cells with exogenous targeted TA peptide. Third, the restoration of CTL recognition following incubation of SCCHN cells with IFN-gamma is associated with a significant (p = 0.001) up-regulation of the APM components TAP1, TAP2, and tapasin. Lastly, and most conclusively, SCCHN cell recognition by CTL is restored by transfection with wild-type TAP1 cDNA. Our findings may explain the association between APM component down-regulation and poor clinical course of the disease in SCCHN. Furthermore, the regulatory nature of the APM defects in SCCHN cells suggests that intralesional administration of IFN-gamma may have a beneficial effect on the clinical course of the disease and on T cell-based immunotherapy of SCCHN by restoring SCCHN cell recognition by CTL.  相似文献   
148.
149.
In the present study, we investigated how cytochrome c catalyzed the nitration of tyrosine at various pHs. The cytochrome c-catalyzed nitration of tyrosine occurred in proportion to the concentration of hydrogen peroxide, nitrite or cytochrome c. The cytochromec-catalyzed nitration of tyrosine was inhibited by catalase, sodium azide, cystein, and uric acid. These results show that the cytochrome c-catalyzed nitrotyrosine formation was due to peroxidase activity. The rate constant between cytochrome c and hydrogen peroxide within the pH range of 3-8 was the largest at pH 6 (37 degrees C). The amount of nitrotyrosine formed was the greatest at pH 5. At pH 3, only cytochromec-independent nitration of tyrosine occurred in the presence of nitrite. At this pH, the UV as well as visible spectrum of cytochrome c was changed by nitrite, even in the presence of hydrogen peroxide, probably via the formation of a heme iron-nitric oxide complex. Due to this change, the peroxidase activity of cytochrome c was lost.  相似文献   
150.
In this study, we report a highly efficient transgenesis technique for Xenopus tropicalis based on a method described first for Medaka. This simple procedure entails co-injection of meganuclease I-SceI and a transgene construct flanked by two I-SceI sites into fertilized eggs. Approximately 30% of injected embryos express transgenes in a promoter-dependent manner. About 1/3 of such embryos show incorporation of the transgene at the one-cell stage and the remainder are 'half-transgenics' suggesting incorporation at the two-cell stage. Transgenes from both classes of embryos are shown to be transmitted and expressed in offspring. The procedure also works efficiently in Xenopus laevis. Because the needle injection procedure does not significantly damage embryos, a high fraction develop normally and can, as well, be injected with a second reagent, for example an mRNA or antisense morpholino oligonucleotide, thus allowing one to perform several genetic manipulations on embryos at one time. This simple and efficient technique will be a powerful tool for high-throughput transgenesis assays in founder animals, and for facilitating genetic studies in the fast-breeding diploid frog, X. tropicalis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号