The objective of this study was to quantify the mastication effort for cooked rice. We analyzed mastication patterns while normal subjects ate a spoonful of cooked rice that had been prepared by cooking with different amounts of water (1.5, 2.0, 3.0, and 4.0 times the water to rice weight). The rice samples were served with the same weight, same volume and same solid content, and electromyography (EMG) of the masticatory muscles was measured. The texture of the four cooked rice samples was instrumentally analyzed by the two-bite method. The number of chews, masticatory time, and jaw-closing muscle activities per chew evaluated by EMG were higher in the rice sample cooked with least water, which exhibited a high firmness value in the instrumental test. Rice cooked with 4.0 times the amount of water exhibited the longest jaw-opening duration, which was related to the adhesiveness value in the instrumental test. The ratio of jaw-opening muscle activity to the preceding jaw-closing muscle activity was lower for the rice containing least water, this corresponding to the area ratio (balance degree) in the instrumental test. Softer rice containing more water reduced the total mastication effort until swallowing because it required a shorter mastication time. It was not difficult for the softer rice with high density to be ingested in greater weight, decreasing the mastication effort for a certain amount. 相似文献
Differential expression of mi-RNAs targeting developmental processes and progressive downregulation of repeat-associated siRNAs following genome merger and genome duplication in the context of allopolyploid speciation in Spartina.
Abstract
The role of small RNAs on gene expression regulation and genome stability is arousing increased interest and is being explored in various plant systems. In spite of prominence of reticulate evolution and polyploidy that affects the evolutionary history of all plant lineages, very few studies analysed RNAi mechanisms with this respect. Here, we explored small RNAs diversity and expression in the context of recent allopolyploid speciation, using the Spartina system, which offers a unique opportunity to explore the immediate changes following hybridization and genome duplication. Small RNA-Seq analyses were conducted on hexaploid parental species (S. alterniflora and S. maritima), their F1 hybrid S. x townsendii, and the neoallododecaploid S. anglica. We identified 594 miRNAs, 2197 miRNA-target genes, and 3730 repeat-associated siRNAs (mostly targeting Class I/Copia-Ivana- Copia-SIRE and LINEs elements). For both mi- and ra-siRNAs, we detected differential expression patterns following genome merger and genome duplication. These misregulations include non-additive expression of miRNAs in the F1 hybrid and additional changes in the allopolyploid targeting developmental processes. Expression of repeat-associated siRNAs indicates a strengthen of transposable element repression during the allopolyploidization process. Altogether, these results confirm the central role small RNAs play in shaping regulatory changes in naturally formed recent allopolyploids.
A series of sugar-modified porous silica monoliths with different sugar ligands (β-lactoside, β-N-acetyllactosaminide, β-d-galactoside, β-d-N-acetylgalactosaminide and β-d-glucoside) and linkers were prepared and evaluated using plant toxins and lectins including ricin and a Ricinus communis agglutinin (RCA120). Among these sugar monoliths, a lactose monolith carrying a triethylene glycol spacer adsorbed ricin and RCA120 with the highest efficiency. The monolith showed no binding with albumin, globulin, and lectins from Jack beans, Osage orange, Amur maackia and wheat germ. All these data support the utility of the lactose-modified monolith as a tool for adsorption and decontamination of plant toxins. 相似文献
Growth and differentiation factor 5 (GDF-5) is a homodimeric protein stabilized by a single disulfide bridge between cysteine 465 in the respective monomers, as well as by three intramolecular cysteine bridges within each subunit. A mature recombinant human GDF-5 variant with cysteine 465 replaced by alanine (rhGDF-5 C465A) was expressed in E. coli, purified to homogeneity, and chemically renatured. Biochemical analysis showed that this procedure eliminated the sole interchain disulfide bond. Surprisingly, the monomeric variant of rhGDF-5 is as potent in vitro as the dimeric form. This could be confirmed by alkaline phosphatase assays and Smad reporter gene activation. Furthermore, dimeric and monomeric rhGDF-5 show comparable binding to their specific type I receptor, BRIb. Studies on living cells showed that both the dimeric and monomeric rhGDF-5 induce homomeric BRIb and heteromeric BRIb/BRII oligomers. Our results suggest that rhGDF-5 C465A has the same biological activity as rhGDF-5 with respect to binding to, oligomerization of and signaling through the BMP receptor type Ib. 相似文献
Huntington's disease is a progressive neurodegenerative disorder that is associated with a CAG repeat expansion in the gene encoding huntingtin. We found that a 60-kDa protein was increased in Neuro2a cells expressing the N-terminal portion of huntingtin with expanded polyglutamine. We purified this protein, and, using mass spectrometry, identified it as p62, an ubiquitin-associated domain-containing protein. A specific p62 antibody stained the ubiquitylated polyQ inclusions in expanded polyglutamine-expressing cells, as well as in the brain of the huntingtin exon 1 transgenic mice. Furthermore, the level of p62 protein and mRNA was increased in expanded polyglutamine-expressing cells. We also found that p62 formed aggresome-like inclusions when p62 was increased in normal Neuro2a cells by a proteasome inhibitor. Knock-down of p62 does not affect the formation of aggresomes or polyglutamine inclusions, suggesting that p62 is recruited to the aggresome or inclusions secondary to their formation. These results suggest that p62 may play important roles as a responsive protein to a polyglutamine-induced stress rather than as a cross-linker between ubiquitylated proteins. 相似文献
A new derivative of 1-phenyl-3-methyl-5-pyrazolone, 4,4-dichloro-1-(2,4-dichlorophenyl)-3-methyl-5-pyrazolone, named TELIN, was chemically synthesized and identified as a potent inhibitor of human telomerase in the cell-free telomeric repeat amplification protocol. TELIN inhibited telomerase activity at submicromolar level with IC50 of approximately 0.3 microM. Kinetic studies revealed that TELIN does not bind to DNA but to telomerase protein, and the mode of inhibition by this substance was competitive-noncompetitive mixed-type with respect to the TS primer, whereas it was uncompetitive or noncompetitive-uncompetitive mixed-type with respect to the three deoxyribonucleosides. These results demonstrate that TELIN is a specific potent catalytic blocker of telomerase,and is considered to be a valuable substance for medical treatment of cancer and related diseases. 相似文献
Urinary exosomes and microvesicles (EMV) are promising biomarkers for renal diseases. Although the density of EMV is very low in urine, large quantity of urine can be easily obtained. In order to analyze urinary EMV mRNA, a unique filter device to adsorb urinary EMV from 10 mL urine was developed, which is far more convenient than the standard ultracentrifugation protocol. The filter part of the device is detachable and aligned to a 96-well microplate format, therefore multiple samples can be processed simultaneously in a high throughput manner following the isolation step. For EMV mRNA quantification, the EMV on the filter is lysed directly by adding lysis buffer and transferred to an oligo(dT)-immobilized microplate for mRNA isolation followed by cDNA synthesis and real-time PCR. Under the optimized assay condition, our method provided comparable or even superior results to the standard ultracentrifugation method in terms of mRNA assay sensitivity, linearity, intra-assay reproducibility, and ease of use. The assay system was applied to quantification of kidney-specific mRNAs such as NPHN and PDCN (glomerular filtration), SLC12A1 (tubular absorption), UMOD and ALB (tubular secretion), and AQP2 (collecting duct water absorption). 12-hour urine samples were collected from four healthy subjects for two weeks, and day-to-day and individual-to-individual variations were investigated. Kidney-specific genes as well as control genes (GAPDH, ACTB, etc.) were successfully detected and confirmed their stable expressions through the two-week study period. In conclusion, this method is readily available to clinical studies of kidney diseases. 相似文献
Human minisatellites consist of tandem arrays of short repeat sequences, and some are highly polymorphic in numbers of repeats among individuals. Since these loci mutate much more frequently than coding sequences, they make attractive markers for screening populations for genetic effects of mutagenic agents. Here we report the results of our analysis of mutations at eight hypervariable minisatellite loci in the offspring (61 from exposed families in 60 of which only one parent was exposed, and 58 from unexposed parents) of atomic bomb survivors with mean doses of >1 Sv. We found 44 mutations in paternal alleles and eight mutations in maternal alleles with no indication that the high doses of acutely applied radiation had caused significant genetic effects. Our finding contrasts with those of some other studies in which much lower radiation doses, applied chronically, caused significantly increased mutation rates. Possible reasons for this discrepancy are discussed. 相似文献
An analytical method for determining paraoxonase activity against sarin, soman and VX was established. We used capillary electrophoresis to measure directly the hydrolysis products: alkyl methylphosphonates. After enzymatic reaction of human serum paraoxonase (PON1) with nerve gas, substrate was removed with dichloromethane, and alkyl methylphoshphonates were quantified by capillary electrophoresis of reversed osmotic flow using cationic detergent and sorbic acid. This method was applied to the characterization of human serum PON1 polymorphism for nerve gas hydrolytic activity in the coding region (Q192R). PON1-192 and PON1-55 genotypes were determined by their gel electrophoretic fragmentation pattern with restriction enzymes after polymerase chain reaction (PCR) of blood leukocyte genomic DNA. Frequencies of genotypes among 63 members of our institutes with PON1-192 and PON1-55 were 9.5% (192QQ), 30.1% (192QR) and 44.4% (192RR), and 82.5% (55LL), 17.5% (55LM) and 0% (55MM), respectively. 192Q and 192R enzymes were purified from the respective genotype human plasma, using blue agarose affinity chromatography and diethyl amino ethane (DEAE) anion exchange chromatography. Vmax and Km were measured using Lineweaver-Burk plots for hydrolytic activities against sarin, soman and VX at pH 7.4 and 25 °C. For sarin and soman, the Vmax for 192Q PON1 were 3.5- and 1.5-fold higher than those for 192R PON1; and kcat/Km for 192Q PON1 were 1.3- and 2.8-fold higher than those for 192R PON1. For VX, there was little difference in Vmax and kcat/Km between 192Q and 192R PON1, and VX hydrolyzing activity was significantly lower than those for sarin and soman. PON1 hydrolyzed sarin and soman more effectively than paraoxon. 相似文献