首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1346篇
  免费   102篇
  国内免费   2篇
  2022年   6篇
  2021年   11篇
  2020年   14篇
  2019年   7篇
  2018年   14篇
  2017年   19篇
  2016年   25篇
  2015年   41篇
  2014年   43篇
  2013年   74篇
  2012年   78篇
  2011年   64篇
  2010年   37篇
  2009年   42篇
  2008年   57篇
  2007年   72篇
  2006年   61篇
  2005年   59篇
  2004年   74篇
  2003年   60篇
  2002年   50篇
  2001年   41篇
  2000年   48篇
  1999年   32篇
  1998年   17篇
  1997年   18篇
  1996年   25篇
  1995年   17篇
  1994年   8篇
  1993年   9篇
  1992年   21篇
  1991年   31篇
  1990年   27篇
  1989年   24篇
  1988年   18篇
  1987年   19篇
  1986年   15篇
  1985年   19篇
  1984年   20篇
  1983年   18篇
  1982年   17篇
  1981年   23篇
  1980年   6篇
  1979年   4篇
  1978年   8篇
  1977年   8篇
  1976年   6篇
  1975年   5篇
  1973年   7篇
  1972年   7篇
排序方式: 共有1450条查询结果,搜索用时 22 毫秒
71.
Characterization of S-adenosylmethionine: catechol O-methyltransferase (EC. 2. 1. 1.6) isolated from bamboo shoot was carried out. Ferulic and sinapic acids which are believed to be lignin precursors are formed by the mediation of the enzyme, and the enzyme activity increased progressively during the lignification of bamboo shoots. Evidences suggest that this enzyme may contribute to the synthesis of lignin precursors.  相似文献   
72.
Allosamidin, a product of Streptomyces sp. No 1713, inhibited Bombyx mori chitinase specifically in a competitive way with a Ki o f about 0.1 μm. The effect of allosamidin on chitinases from r Streptomyces griseus and Serratia marcescens was weaker, about 1/500 that on B. mori chitinase. Allosamidin did not inhibit yam chitinase, lysozymes of hen egg-white or human urine, or B. mori α-N-acetyl-d-glucosaminidase. The results suggest that allosamidin is a specific inhibitor of the insect chitinase.  相似文献   
73.
The study was undertaken to clarify whether three kinds of lipases (EC 3.1.1.3) secreted from Rhizopus delemar are originally different or identical with each other. First of all, the purification of those lipases was carried out and their enzymatic properties were examined. Their properties including the stability on heat and pH, precipitabilities at a certain pH, the behaviours on a SE-Sephadex C50 column and on a Sephadex G200 column and so on were compared.

From the results, A-lipase is clearly different from the other two lipases. On the other hand, it seems that B- and C-lipases are originally identical.  相似文献   
74.
TTHA0829 from Thermus thermophilus HB8 has a molecular mass of 22,754 Da and is composed of 210 amino acid residues. The expression of TTHA0829 is remarkably elevated in the latter half of logarithmic growth phase. TTHA0829 can form either a tetrameric or dimeric structure, and main-chain folding provides an N-terminal cystathionine-β-synthase (CBS) domain and a C-terminal aspartate-kinase chorismate-mutase tyrA (ACT) domain. Both CBS and ACT are regulatory domains to which a small ligand molecule can bind. The CBS domain is found in proteins from organisms belonging to all kingdoms and is observed frequently as two or four tandem copies. This domain is considered as a small intracellular module with a regulatory function and is typically found adjacent to the active (or functional) site of several enzymes and integral membrane proteins. The ACT domain comprises four β-strands and two α-helices in a βαββαβ motif typical of intracellular small molecule binding domains that help control metabolism, solute transport and signal transduction. We discuss the possible role of TTHA0829 based on its structure and expression pattern. The results imply that TTHA0829 acts as a cell-stress sensor or a metabolite acceptor.  相似文献   
75.
Light is the strongest synchronizer of human circadian rhythms, and exposure to residential light at night reportedly causes a delay of circadian rhythms. The present study was conducted to investigate the association between color temperature of light at home and circadian phase of salivary melatonin in adults and children. Twenty healthy children (mean age: 9.7 year) and 17 of their parents (mean age: 41.9 years) participated in the experiment. Circadian phase assessments were made with dim light melatonin onset (DLMO). There were large individual variations in DLMO both in adults and children. The average DLMO in adults and in children were 21:50 ± 1:12 and 20:55 ± 0:44, respectively. The average illuminance and color temperature of light at eye level were 139.6 ± 82.7 lx and 3862.0 ± 965.6 K, respectively. There were significant correlations between color temperature of light and DLMO in adults (r = 0.735, p < 0.01) and children (r = 0.479, p < 0.05), although no significant correlations were found between illuminance level and DLMO. The results suggest that high color temperature light at home might be a cause of the delay of circadian phase in adults and children.  相似文献   
76.
To extend life expectancy and ensure healthy aging, it is crucial to prevent and minimize age‐induced skeletal muscle atrophy, also known as sarcopenia. However, the disease's molecular mechanism remains unclear. The age‐related Wnt/β‐catenin signaling pathway has been recently shown to be activated by the (pro)renin receptor ((P)RR). We report here that (P)RR expression was increased in the atrophied skeletal muscles of aged mice and humans. Therefore, we developed a gain‐of‐function model of age‐related sarcopenia via transgenic expression of (P)RR under control of the CAG promoter. Consistent with our hypothesis, (P)RR‐Tg mice died early and exhibited muscle atrophy with histological features of sarcopenia. Moreover, Wnt/β‐catenin signaling was activated and the regenerative capacity of muscle progenitor cells after cardiotoxin injury was impaired due to cell fusion failure in (P)RR‐Tg mice. In vitro forced expression of (P)RR protein in C2C12 myoblast cells suppressed myotube formation by activating Wnt/β‐catenin signaling. Administration of Dickkopf‐related protein 1, an inhibitor of Wnt/β‐catenin signaling, and anti‐(P)RR neutralizing antibody, which inhibits binding of (P)RR to the Wnt receptor, significantly improved sarcopenia in (P)RR‐Tg mice. Furthermore, the use of anti‐(P)RR neutralizing antibodies significantly improved the regenerative ability of skeletal muscle in aged mice. Finally, we show that Yes‐associated protein (YAP) signaling, which is coordinately regulated by Wnt/β‐catenin, contributed to the development of (P)RR‐induced sarcopenia. The present study demonstrates the use of (P)RR‐Tg mice as a novel sarcopenia model, and shows that (P)RR‐Wnt‐YAP signaling plays a pivotal role in the pathogenesis of this disease.  相似文献   
77.
We previously demonstrated that hDREF, a human homologue of Drosophila DNA replication-related element binding factor (dDREF), is a DNA-binding protein predominantly distributed with granular structures in the nucleus. Here, glutathione S-transferase pulldown and chemical cross-linking assays showed that the carboxyl-terminal hATC domain of hDREF, highly conserved among hAT transposase family members, possesses self-association activity. Immunoprecipitation analyses demonstrated that hDREF self-associates in vivo, dependent on hATC domain. Moreover, analyses using a series of hDREF mutants carrying amino acid substitutions in the hATC domain revealed that conserved hydrophobic amino acids are essential for self-association. Immunofluorescence studies further showed that all hDREF mutants lacking self-association activity failed to accumulate in the nucleus. Self-association-defective hDREF mutants also lost association with endogenous importin beta1. Moreover, electrophoretic gel-mobility shift assays revealed that the mutations completely abolished the DNA binding activity of hDREF. These results suggest that self-association of hDREF via the hATC domain is necessary for its nuclear accumulation and DNA binding. We also found that ZBED4/KIAA0637, another member of the human hAT family, also self-associates, again dependent on the hATC domain, with deletion resulting in loss of efficient nuclear accumulation. Thus, hATC domains of human hAT family members appear to have conserved functions in self-association that are required for nuclear accumulation.  相似文献   
78.
This study aimed to assess the relationship between basal metabolic rate (BMR) and metabolic heat production, and to clarify the involvement of BMR in determining the phenotype of cold tolerance. Measurements of BMR, maximum oxygen uptake, and cold exposure test were conducted on ten males. In the cold exposure test, rectal (T(rec)) and mean skin temperatures (T(ms)), oxygen uptake, and blood flow at forearm (BF(arm)) were measured during exposure to cold (10 degrees C) for 90 min. Significant correlations were observed between BMR and increasing rate of oxygen uptake, as well as between decreasing rate of BF(arm) and increasing rate of oxygen uptake at the end of cold exposure. These findings suggested that individuals with a lower BMR were required to increase their metabolic heat production during cold exposure, and that those with a higher BMR were able to moderate increased metabolic heat production during cold exposure because they were able to reduce heat loss. This study showed that BMR is an important factor in determining the phenotype of cold tolerance, and that individuals with a low BMR showed calorigenic-type cold adaptation, whereas subjects with a high BMR exhibited adiabatic-type cold adaptation by peripheral vasoconstriction.  相似文献   
79.
Mitochondrial damage is a well known cause of mitochondria-related diseases. A major mechanism underlying the development of mitochondria-related diseases is thought to be an increase in intracellular oxidative stress produced by impairment of the mitochondrial electron transport chain (ETC). However, clear evidence of intracellular free radical generation has not been clearly provided for mitochondrial DNA (mtDNA)-damaged cells. In this study, using the novel fluorescence dye, 2-[6-(4'-hydroxy)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid (HPF), which was designed to detect hydroxyl radicals (*OH), intracellular free radical formation was examined in 143B cells (parental cells), 143B-rho(0) cells (mtDNA-lacking cells), 87 wt (cybrid), and cybrids of 4977-bp mtDNA deletion (common deletion) cells containing the deletion with 0%, 5%, 50% and >99% frequency (HeLacot, BH5, BH50 and BH3.12, respectively), using a laser confocal microscope detection method. ETC inhibitors (rotenone, 3-nitropropionic acid, thenoyltrifluoroacetone, antimycin A and sodium cyanide) were also tested to determine whether inhibitor treatment increased intracellular reactive oxygen species (ROS) generation. A significant increase in ROS for 143B-rho(0) cells was observed compared with 143B cells. However, for the 87 wt cybrid, no increase was observed. An increase was also observed in the mtDNA-deleted cells BH50 and BH3.12. The ETC inhibitors increased intracellular ROS in both 143B and 143B-rho(0) cells. Furthermore, in every fluorescence image, the fluorescence dye appeared localized around the nuclei. To clarify the localization, we double-stained cells with the dye and MitoTracker Red. The resulting fluorescence was consistently located in mitochondria. Furthermore, manganese superoxide dismutase (MnSOD) cDNA-transfected cells had decreased ROS. These results suggest that more ROS are generated from mitochondria in ETC-inhibited and mtDNA-damaged cells, which have impaired ETC.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号