首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   324篇
  免费   43篇
  2023年   2篇
  2022年   5篇
  2021年   6篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   10篇
  2016年   10篇
  2015年   21篇
  2014年   10篇
  2013年   21篇
  2012年   33篇
  2011年   27篇
  2010年   24篇
  2009年   14篇
  2008年   23篇
  2007年   26篇
  2006年   34篇
  2005年   23篇
  2004年   18篇
  2003年   15篇
  2002年   7篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1973年   1篇
  1968年   1篇
  1966年   2篇
排序方式: 共有367条查询结果,搜索用时 15 毫秒
91.
92.
Campylobacter jejuni is one of the most important causes of human diarrhea worldwide. In the present work, multilocus sequence typing was used to study the genotypic diversity of 145 C. jejuni isolates from 135 chicken meat preparations sampled across Belgium. Isolates were further typed by pulsed-field gel electrophoresis, and their susceptibilities to six antimicrobials were determined. Fifty-seven sequence types (STs) were identified; 26.8% of the total typed isolates were ST-50, ST-45, or ST-257, belonging to clonal complex CC-21, CC-45, or CC-257, respectively. One clonal group comprised 22% (32/145) of all isolates, originating from five different companies and isolated over seven sampling months. Additionally, 53.1% of C. jejuni isolates were resistant to ciprofloxacin, and 48.2% were resistant to tetracycline; 28.9% (42/145) of all isolates were resistant to both ciprofloxacin and tetracycline. The correlation between certain C. jejuni clonal groups and resistance to ciprofloxacin and tetracycline was notable. C. jejuni isolates assigned to CC-21 (n = 35) were frequently resistant to ciprofloxacin (65.7%) and tetracycline (40%); however, 90% (18/20) of the isolates assigned to CC-45 were pansusceptible. The present study demonstrates that certain C. jejuni genotypes recur frequently in the chicken meat supply. The results of molecular typing, combined with data on sample sources, indicate a possible dissemination of C. jejuni clones with high resistance to ciprofloxacin and/or tetracycline. Whether certain clonal groups are common in the environment and repeatedly infect Belgian broiler flocks or whether they have the potential to persist on farms or in slaughterhouses needs further investigation.Campylobacter jejuni is among the most common bacterial causes of human gastroenteritis worldwide (4, 23). Infected humans exhibit a range of clinical symptoms from mild, watery diarrhea to severe inflammatory diarrhea (14). In addition, C. jejuni has been identified as an important infectious trigger for Guillain-Barré syndrome, the most common cause of acute flaccid paralysis in polio-free regions (16). Another issue of concern regarding Campylobacter is the increase in antimicrobial resistance appearing in various regions around the world (1). Infection with an antimicrobial-resistant Campylobacter strain may lead to a suboptimal outcome of antimicrobial treatment or even to treatment failure (11).Consumption of contaminated water and raw milk has been implicated in campylobacteriosis outbreaks (23). However, the majority of human cases are sporadic, and consumption or mishandling of contaminated raw or undercooked poultry meat is believed to be an important source of infection. Risk assessment studies, outbreak investigations, and case-control reports all incriminate chicken meat as a major source, perhaps the major source, of food-borne transmission (14, 17, 32, 48). In Belgium in 1999, a controlled withdrawal of poultry products from sale due to alleged dioxin contamination resulted in a 40% reduction in the frequency of human campylobacteriosis (44). Thereafter and since the year 2000, the Campylobacter contamination of Belgian poultry carcasses and meat has been monitored by the Federal Agency for the Safety of the Food Chain, and the rate of positive samples is regarded as high. In 2006, 55.5% of cecal samples (n = 6,443) from Belgian broilers at slaughter tested positive for Campylobacter (3). In 2007, an industry-focused survey reported that 48% of Belgian chicken meat preparations (n = 656) were contaminated with Campylobacter (19).Molecular typing is an important tool in elucidating the diversity and transmission routes of Campylobacter isolates contaminating the food chain. In the United States, molecular analysis of Campylobacter spp. from poultry production and processing environments showed that many of the clones found within a flock are present in the final products, although the diversity of Campylobacter isolates in the final product was lower than that observed in the flock (22). Furthermore, numerous molecular epidemiological studies indicate that the genotypes of C. jejuni isolated from human cases overlap those of poultry origin (17, 47). Various molecular typing methods for the study of the population structure of Campylobacter are currently available (46). Among these, the multilocus sequence typing (MLST) approach is an emerging tool for research on the population structure and molecular epidemiology of Campylobacter. The technique is highly reproducible, portable, and easy to interpret, and results can be shared through a publicly accessible online database (31, 34). As such, MLST is becoming an important tool for studying the molecular epidemiology of Campylobacter in a global context. The accumulation of sequence typing data generated from different countries and settings could allow the creation of more-sophisticated models of the epidemiology and evolution of bacterial pathogens and the development of improved approaches for combating their spread (41).In Belgium, there is a paucity of information regarding the population structure of Campylobacter in the chicken meat supply. No population-based surveys have been conducted to investigate the molecular epidemiology of C. jejuni in chicken meat at points close to human consumption. In this study, MLST and pulsed-field gel electrophoresis (PFGE) were used to characterize the diversity of, and clonal relationships among, 145 C. jejuni isolates from Belgian chicken meat preparations. In addition, we characterized the antimicrobial resistance in this collection and correlated it with C. jejuni genotypes.  相似文献   
93.
In plant cells, Golgi vesicles are transported to the division plane to fuse with each other, forming the cell plate, the initial membrane-bordered cell wall separating daughter cells. Vesicles, but not organelles, move through the phragmoplast, which consists of two opposing cylinders of microtubules and actin filaments, interlaced with endoplasmic reticulum membrane. To study physical aspects of this transport/inhibition process, we microinjected fluorescent synthetic 1,2-dioleoyl-sn-glycero-3-phospho-rac-1-glycerol (DOPG) vesicles and polystyrene beads into Tradescantia virginiana stamen hair cells. The phragmoplast was nonselective for DOPG vesicles of a size up to 150 nm in diameter but was a physical barrier for polystyrene beads having a diameter of 20 and 40 nm and also when beads were coated with the same DOPG membrane. We conclude that stiffness is a parameter for vesicle transit through the phragmoplast and discuss that cytoskeleton configurations can physically block such transit.Cells and their constituents are physical entities, and next to chemical interactions, cell structures are determinants of cell behavior. Therefore, apart from techniques to image living cells at the subcellular level, experiments are needed that probe physical parameters important in cell function in vivo. We took the plant phragmoplast structure to answer the question whether the physical aspect “stiffness” is a factor in the inhibition of transport through this structure by microinjecting synthetic vesicles and polystyrene beads in Tradescantia virginiana stamen hair cells during cytokinesis, when the phragmoplast is essential for partitioning the cytoplasm between two daughter cells. Plant cells partition by producing a cell plate made of fused 60- to 80-nm-diameter vesicles (Staehelin and Hepler, 1996; Jürgens, 2005) proven to be Golgi vesicles (Reichardt et al., 2007). Their content becomes the new cell wall and their membranes become the daughter cell plasma membranes. The phragmoplast consists of two opposing cylinders of microtubules and actin filaments, interlaced with similarly aligned endoplasmic reticulum (ER) membranes. This phragmoplast cytoskeleton is the transport vehicle for Golgi vesicles to the plane where the cell plate is being formed (Staehelin and Hepler, 1996; Valster et al., 1997), keeps them in this plane (Esseling-Ozdoba et al., 2008b), where they fuse with each other (Samuels et al., 1995; Otegui et al., 2001; Seguí-Simarro et al., 2004), and assists in the proper attachment of the cell plate to the parental cell wall (Valster et al., 1997; Molchan et al., 2002). Transit of organelles, including Golgi bodies, is inhibited (Staehelin and Hepler, 1996; Nebenführ et al., 2000; Seguí-Simarro et al., 2004). Most of these data are known from static electron microscopy images. Electron microscopy after high-pressure freezing and freeze substitution (Thijsen et al., 1998) and electron tomography studies (Otegui et al., 2001; Seguí-Simarro et al., 2004; Austin et al., 2005) show that, in the early stage of cell plate formation in the center and later at the phragmoplast border, microtubules are aligned parallel to each other at distances of 20 to 100 nm. Keeping in mind that also actin filaments and ER membranes, aligned in the same orientation, are present between the microtubules, this leaves little room for the cell plate-forming vesicles during their transport through this phragmoplast.Clearly, during the past decade, significant progress has been made in the elucidation of the structural organization of cell plate-forming phragmoplasts, which has set the stage for studies to elucidate physical properties of phragmoplasts. The experimental approach we use is injecting particulate and vesicular fluorescent probes into living and dividing cells and observing the extent to which such probes can enter the phragmoplast and can be transported to the cell plate region. We have shown before that synthetic lipid 1,2-dioleoyl-sn-glycero-3-phospho-rac-1-glycerol (DOPG) vesicles of 60 nm diameter are transported through the phragmoplast, accumulate, and are kept in the cell plate region but do not fuse (Esseling-Ozdoba et al., 2008b). Now, we asked whether similar, flexible, synthetic lipid (DOPG) vesicles of various sizes, smaller and larger than endogenous vesicles, as well as stiff polystyrene beads, and such beads coated with the DOPG membrane, are transported through the phragmoplast and enter the plane where the cell plate is being formed, a question pertaining to a physical property of the phragmoplast. Our principal finding is that injected synthetic vesicles up to 150 nm diameter can enter and be transported to the cell plate region, where they accumulate but do not become incorporated into the cell plate. In contrast, polystyrene beads, the noncoated ones and those coated with the same lipid as the vesicles with diameters of 20 and 40 nm, can enter phragmoplasts but cannot be transported to the cell plate region, and the 40-nm beads slow cell plate formation, possibly by interfering with the delivery of normal, cell plate-forming vesicles to the cell plate.  相似文献   
94.
To identify genes involved in vascular patterning in Arabidopsis (Arabidopsis thaliana), we screened for abnormal venation patterns in a large collection of leaf shape mutants isolated in our laboratory. The rotunda1-1 (ron1-1) mutant, initially isolated because of its rounded leaves, exhibited an open venation pattern, which resulted from an increased number of free-ending veins. We positionally cloned the RON1 gene and found it to be identical to FRY1/SAL1, which encodes an enzyme with inositol polyphosphate 1-phosphatase and 3′ (2′),5′-bisphosphate nucleotidase activities and has not, to our knowledge, previously been related to venation patterning. The ron1-1 mutant and mutants affected in auxin homeostasis share perturbations in venation patterning, lateral root formation, root hair length, shoot branching, and apical dominance. These similarities prompted us to monitor the auxin response using a DR5-GUS auxin-responsive reporter transgene, the expression levels of which were increased in roots and reduced in leaves in the ron1-1 background. To gain insight into the function of RON1/FRY1/SAL1 during vascular development, we generated double mutants for genes involved in vein patterning and found that ron1 synergistically interacts with auxin resistant1 and hemivenata-1 but not with cotyledon vascular pattern1 (cvp1) and cvp2. These results suggest a role for inositol metabolism in the regulation of auxin responses. Microarray analysis of gene expression revealed that several hundred genes are misexpressed in ron1-1, which may explain the pleiotropic phenotype of this mutant. Metabolomic profiling of the ron1-1 mutant revealed changes in the levels of 38 metabolites, including myoinositol and indole-3-acetonitrile, a precursor of auxin.During the vegetative development of Arabidopsis (Arabidopsis thaliana), leaves are produced from the shoot apical meristem in an orchestrated program that involves patterning and cell division, expansion, and differentiation. The mature vegetative leaves of Arabidopsis are histologically simple and consist of the outer epidermis and internal mesophyll and vasculature (Tsukaya, 2005). Veins are crucial for normal leaf function, transporting water, minerals, and photosynthate and providing mechanical support to the lamina (Evert and Eichhorn, 2006). The leaves of many vascular plants, such as the angiosperms, exhibit a closed reticulate venation pattern (Roth-Nebelsick et al., 2001). In Arabidopsis, the leaf venation pattern is brochidodromous, with a single primary vein (midvein) and a series of loops formed by secondary veins that connect other secondary and higher order veins (Hickey, 1973; Candela et al., 1999).Vein differentiation must be spatially and temporally regulated throughout leaf development. Many aspects of venation patterning in plant leaves can be explained by the auxin canalization model (Sachs, 1991; Rolland-Lagan and Prusinkiewicz, 2005), which is supported by considerable experimental evidence. The role of auxin in venation pattern formation is supported by the phenotypes of mutants possessing altered auxin biosynthesis or perception (Alonso-Peral et al., 2006; Cheng et al., 2006), experimental perturbation of auxin transport (Mattsson et al., 1999; Sieburth, 1999), and the expression pattern of auxin-responsive reporter transgenes (Mattsson et al., 2003; Scarpella et al., 2006). The phenotypes of mutants impaired in auxin transport, such as scarface (sfc; Deyholos et al., 2000; Sieburth et al., 2006) and pin-formed1 (pin1; Okada et al., 1991; Gälweiler et al., 1998), and perception, such as monopteros (mp; Hardtke and Berleth,1998), are pleiotropic and include defects in vein patterning or differentiation. The sfc mutant exhibits a disconnected venation pattern (Deyholos et al., 2000), and the lateral organs of strong mp mutants display a reduced venation pattern with no peripheral veins (Przemeck et al., 1996). In contrast, the leaf venation pattern of pin1 mutants resembles that of wild-type plants treated with auxin transport inhibitors, exhibiting extra primary and secondary veins and an accumulation of vascular elements along the leaf margin (Mattsson et al., 1999).Unlike sfc, pin1, or mp, other leaf venation mutants are not primarily affected in auxin production, perception, or transport (Carland et al., 1999). Examples include cotyledon vascular pattern1 (cvp1), the cotyledons of which exhibit isolated patches of vascular tissue (Carland et al., 1999, 2002), and cvp2, which exhibits increased numbers of free-ending veins in the cotyledons and leaves (Carland et al., 1999; Carland and Nelson, 2004). CVP1 encodes the STEROL METHYLTRANSFERASE2 (SMT2) protein, an enzyme that functions in the sterol biosynthetic pathway (Carland et al., 2002). CVP2 encodes an inositol polyphosphate 5′-phosphatase (5PTase; Carland and Nelson, 2004), which mediates the hydrolysis of inositol 1,4,5-trisphosphate (IP3), a eukaryotic second messenger with a pivotal role in calcium signaling (Berridge, 2009). IP3 controls cytosolic calcium levels by regulating calcium release from the vacuole and endoplasmic reticulum (Krinke et al., 2007). The disconnected, open venation pattern of cvp2 cotyledons and leaves suggested a role for intracellular IP3 levels in vascular development (Carland and Nelson, 2004). Recently, CVP2 and another 5PTase, CVP2-LIKE1 (CVL1), have been shown to regulate vein patterning through the production of a specific phosphoinositide (PI) that acts as a ligand for SFC/VASCULAR NETWORK3 (VAN3), which in turn controls the traffic of vesicles that accounts for the polar subcellular localization of PIN1 proteins (Carland and Nelson, 2009; Naramoto et al., 2009). Another inositol 5PTase, At5PTase13, has been shown to play a role in auxin-mediated vein development in cotyledons (Lin et al., 2005). Furthermore, the open vein networks present in the leaves of forked and tornado mutants (Steynen and Schultz, 2003; Cnops et al., 2006) may be due to altered auxin perception or distribution.To identify genes required for venation patterning, we screened for naturally occurring variations in the venation pattern of Arabidopsis vegetative leaves (Candela et al., 1999). In this way, we discovered the spontaneously occurring hemivenata-1 (hve-1) mutation, which causes a venation pattern that is significantly simpler than those of other wild types, such as Landsberg erecta (Ler) and Columbia-0 (Col-0). We positionally cloned the HVE gene, which encodes a CAND1 protein involved in ubiquitin-mediated auxin signaling (Alonso-Peral et al., 2006). To identify additional loci necessary for vascular patterning, we screened for venation pattern defects in a collection of leaf shape mutants isolated in our laboratory after ethyl methanesulfonate (EMS) mutagenesis (Berná et al., 1999) and found that the rotunda1-1 (ron1-1) mutant, named after the round laminae of its vegetative leaves, displays disconnected leaf veins. Here, we describe the phenotypic characterization of the ron1-1 mutant and the map-based cloning of RON1, which encodes an inositol polyphosphate 1-phosphatase that plays a role in venation patterning, as determined by morphological, reporter gene, and double mutant analyses. Our results suggest an interplay between inositol and auxin signaling in a number of developmental pathways, including those responsible for leaf venation pattern formation.  相似文献   
95.
Three different modified phosphoramidite nucleoside building blocks equipped with additional protected imidazole, masked alcohol and masked carboxylate functionality are synthesized and incorporated into oligonucleotides. Based on the serine-protease active site model, doubly and triply modified duplexes are created and tested for stability. Analysis of different spatial distributions of the extra functionalities shows that careful positioning can even overcome duplex destabilisation caused by the introduction of mismatches.  相似文献   
96.
The presence of enteric viruses in drinking water is a potential health risk. Growing interest has arisen in nanometals for water disinfection, in particular the use of silver-based nanotechnology. In this study, Lactobacillus fermentum served as a reducing agent and bacterial carrier matrix for zerovalent silver nanoparticles, referred to as biogenic Ag0. The antiviral action of biogenic Ag0 was examined in water spiked with an Enterobacter aerogenes-infecting bacteriophage (UZ1). Addition of 5.4 mg liter−1 biogenic Ag0 caused a 4.0-log decrease of the phage after 1 h, whereas the use of chemically produced silver nanoparticles (nAg0) showed no inactivation within the same time frame. A control experiment with 5.4 mg liter−1 ionic Ag+ resulted in a similar inactivation after 5 h only. The antiviral properties of biogenic Ag0 were also demonstrated on the murine norovirus 1 (MNV-1), a model organism for human noroviruses. Biogenic Ag0 was applied to an electropositive cartridge filter (NanoCeram) to evaluate its capacity for continuous disinfection. Addition of 31.25 mg biogenic Ag0 m−2 on the filter (135 mg biogenic Ag0 kg−1 filter medium) caused a 3.8-log decline of the virus. In contrast, only a 1.5-log decrease could be obtained with the original filter. This is the first report to demonstrate the antiviral efficacy of extracellular biogenic Ag0 and its promising opportunities for continuous water disinfection.At least 1 billion people do not have access to safe drinking water, according to the WHO (41). Contamination of drinking water and the subsequent outbreak of waterborne diseases are the leading cause of death in many developing nations. Moreover, the spectrum and incidence of some infectious diseases are increasing worldwide (40). Among them, the transmission of waterborne human noroviruses is considered to be the major cause of acute nonbacterial gastroenteritis (22). Numerous outbreaks of norovirus-associated gastroenteritis have been linked with ingestion of contaminated drinking water, in developed countries also (6; M. Kukkula, L. Maunula, E. Silvennoinen, and C. H. von Bonsdorff, presented at the International Workshop on Human Caliciviruses, Atlanta, GA, 29 to 31 March 1999). Therefore, the development of innovative drinking water quality control strategies is of the utmost importance in this decade.Recent interest has arisen in the use of nanotechnology for water disinfection (20). In particular the formation of by-products by conventional disinfection techniques (e.g., chlorination), has encouraged researchers to explore the antimicrobial activity of several nanomaterials, such as silver (18, 31). Silver-containing nanoparticles have previously been demonstrated to be effective against bacteria and viral particles (10, 28, 34). Several mechanisms of the antiviral activity have been ascribed to (chemically produced) zerovalent silver nanoparticles (nAg0) but still remain not fully understood. On the one hand, nAg0 can release Ag+ ions, which interact with thiol groups in proteins and interfere with DNA replication (11, 21, 24). On the other hand, the adhesion of nAg0 as such is responsible for the inactivation of HIV-1 virions (10).Previous studies showed that chemically produced nAg0 were unstable in solution and would easily aggregate with average particle sizes of <40 nm or at high concentrations (23). As a consequence, the specific surface of the nanomaterial decreases. Moreover, there is a need for environmentally friendly approaches to production of nanoparticles. To cope with these demands, biological processes have been developed using microorganisms. Microbial approaches to obtain nanoscale Ag0 have been demonstrated for the bacterium Pseudomonas stutzeri AG259 (17) and for fungi, e.g., Verticillium sp. (26), Phoma sp. (5), Fusarium sp. (2, 16), and Aspergillus sp. (12, 29, 39). However, these enzymatic reduction processes are slow and yield low concentrations of silver. Moreover, if the nanoparticles are produced intracellularly, specific treatments (e.g., heat treatment at 600°C for 6 h) are necessary to make the nanoparticles accessible for antibacterial or antiviral applications (39).Recently, lactic acid bacteria have been used as reducing agents for the fast, nonenzymatic, and extracellular production of nanoscale-sized Ag0 particles (33). The bacterial cell wall hereby serves as a microscale carrier matrix for the nanoparticles. The unique association of the nanoparticles with the (dead) bacterial carrier matrix, called biogenic Ag0, prevents them from aggregating and makes the association promising for disinfection technologies. In the case of virus inactivation, smaller nanoparticles are known to be more efficient due to a more effective binding to the glycoproteins of the viral envelope (10, 28). For biogenic Ag0 production using lactic acid bacteria, it was demonstrated that different particle sizes could be obtained, depending on the species used (33). Production by Lactobacillus fermentum resulted in the smallest average diameter and a narrow size distribution, potentially favorable for antimicrobial applications (33).The objective of the present study was to examine the inactivation of a bacteriophage (UZ1), isolated from hospital sewage, by biogenic Ag0. This DNA phage, a T7-like coliphage of the genus Podovirida (order Caudovirales) (38), is infective for Enterobacter aerogenes BE1, a species belonging to the normal digestive microbiota (30). The virucidal action of biogenic Ag0 was evaluated in drinking water and compared with the use of ionic Ag+ and chemically produced nAg0. To test the antiviral activity of biogenic Ag0 against noroviruses as well, the murine norovirus 1 (MNV-1) was used as a surrogate organism for human noroviruses (43). Finally, continuous disinfection by the biogenic nanoparticles was evaluated in a flowthrough system with a coated cartridge filter. To our knowledge, this is the first report to demonstrate the antiviral effect of extracellular biogenic Ag0.  相似文献   
97.
Rhizophora mucronata Lam. is a tropical mangrove with semi-viviparous (cotyledon body protrusion before shedding), non-quiescent and non-desiccating (recalcitrant) seeds. As recalcitrance has been thought to relate to the absence of desiccation-related proteins such as dehydrins, we for the first time systematically described and classified embryogenesis in R. mucronata and assessed the presence of dehydrin-like proteins. Embryogenesis largely follows the classic pattern till stage eight, the torpedo stage, with the formation of a cotyledonary body. Ovule and embryo express radical adaptations to semi-vivipary in the saline environment: (1) A large, highly vacuolated and persistent endosperm without noticeable food reserves that envelopes the developing embryo. (2) Absence of vascular tissue connections between embryo and maternal tissue, but, instead, transfer layers in between endosperm and integument and endosperm and embryo. Dehydrin-like proteins (55–65 kDa) were detected by the Western analysis, in the ovules till stage 10 when the integuments are dehisced. An additional 50 kDa band was detected at stages 6–8. Together these results suggest a continuous flow of water with nutrients from the integument via the endosperm to the embryo, circumventing the vascular route and probably suppressing the initially induced dehydrin expression.  相似文献   
98.
99.
Mislocalization, aberrant processing and aggregation of TAR DNA-binding protein 43 (TDP-43) is found in the neurons affected by two related diseases, amyotrophic lateral sclerosis (ALS) and frontotemporal lobe dementia (FTLD). These TDP-43 abnormalities are seen when TDP-43 is mutated, such as in familial ALS, but also in FTLD, caused by null mutations in the progranulin gene. They are also found in many patients with sporadic ALS and FTLD, conditions in which only wild type TDP-43 is present. The common pathological hallmarks and symptomatic cross over between the two diseases suggest that TDP-43 and progranulin may be mechanistically linked. In this study we aimed to address this link by establishing whether overexpression of mutant TDP-43 or knock-down of progranulin in zebrafish embryos results in motor neuron phenotypes and whether human progranulin is neuroprotective against such phenotypes. Mutant TDP-43 (A315T mutation) induced a motor axonopathy characterized by short axonal outgrowth and aberrant branching, similar, but more severe, than that induced by mutant SOD1. Knockdown of the two zebrafish progranulin genes, grna and grnb, produced a substantial decrease in axonal length, with knockdown of grna alone producing a greater decrease in axonal length than grnb. Progranulin overexpression rescued the axonopathy induced by progranulin knockdown. Interestingly, progranulin also rescued the mutant TDP-43 induced axonopathy, whilst it failed to affect the mutant SOD1-induced phenotype. TDP-43 was found to be nuclear in all conditions described. The findings described here demonstrate that progranulin is neuroprotective in vivo and may have therapeutic potential for at least some forms of motor neuron degeneration.  相似文献   
100.

Background

Although both smoking and respiratory complaints are very common, tools to improve diagnostic accuracy are scarce in primary care. This study aimed to reveal what inflammatory patterns prevail in clinically established diagnosis groups, and what factors are associated with eosinophilia.

Method

Induced sputum and blood plasma of 59 primary care patients with COPD (n = 17), asthma (n = 11), chronic bronchitis (CB, n = 14) and smokers with no respiratory complaints ('healthy smokers', n = 17) were collected, as well as lung function, smoking history and clinical work-up. Patterns of inflammatory markers per clinical diagnosis and factors associated with eosinophilia were analyzed by multiple regression analyses, the differences expressed in odds ratios (OR) with 95% confidence intervals.

Results

Multivariately, COPD was significantly associated with raised plasma-LBP (OR 1.2 [1.04–1.37]) and sTNF-R55 in sputum (OR 1.01 [1.001–1.01]), while HS expressed significantly lowered plasma-LBP (OR 0.8 [0.72–0.95]). Asthma was characterized by higher sputum eosinophilic counts (OR 1.3 [1.05–1.54]), while CB showed a significantly higher proportion of sputum lymphocytic counts (OR 1.5 [1.12–1.9]). Sputum eosinophilia was significantly associated with reversibility after adjusting for smoking, lung function, age, gender and allergy.

Conclusion

Patterns of inflammatory markers in a panel of blood plasma and sputum cells and mediators were discernable in clinical diagnosis groups of respiratory disease. COPD and so-called healthy smokers showed consistent opposite associations with plasma LBP, while chronic bronchitics showed relatively predominant lymphocytic inflammation compared to other diagnosis groups. Only sputum eosinophilia remained significantly associated with reversibility across the spectrum of respiratory disease in smokers with airway complaints.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号