首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   332篇
  免费   43篇
  2023年   2篇
  2022年   3篇
  2021年   6篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2017年   10篇
  2016年   10篇
  2015年   24篇
  2014年   13篇
  2013年   22篇
  2012年   34篇
  2011年   27篇
  2010年   24篇
  2009年   14篇
  2008年   23篇
  2007年   26篇
  2006年   34篇
  2005年   23篇
  2004年   18篇
  2003年   15篇
  2002年   7篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1973年   1篇
  1968年   1篇
  1966年   2篇
排序方式: 共有375条查询结果,搜索用时 625 毫秒
21.
22.
23.
The raffinose family oligosaccharides (RFOs), including raffinose (Gal-α(1 → 6)-Glc-α(1 → 2)β-Fru), stachyose (Gal-α(1 → 6)-Gal-α(1 → 6)-Glc-α(1 → 2)β-Fru) and higher degree of polymerization RFOs are the most widespread galactosyl-oligosaccharides (GOS) in the plant kingdom. Stellaria media is a typical representative of the Caryophyllaceae, a plant family lacking stachyose and the typical galactosyl extensions of stachyose. During cold treatment raffinose, lychnose (Gal-α(1 → 6)-Glc-α(1 → 2)β-Fru-α(1 → 1)-Gal) and stellariose (Gal-α(1 → 6)-[Gal-α(1 → 4)]-Glc-α(1 → 2)β-Fru-α(1 → 1)-Gal) were found to accumulate in S. media stems. Next to these prominent oligosaccharides, two extra GOS were discovered.Biochemical analyses (enzymatic incubations and mild acid hydrolysis) and mass spectrometry identified the first, most abundant oligosaccharide as Glc-α(1 → 2)β-Fru-α(1 → 1)-Gal, a breakdown product of lychnose. The structure of this trisaccharide was confirmed by full NMR characterization. The second, less abundant compound (termed mediose) was identified as Gal-α(1 → 6)-[Gal-α(1 → 4)]Glc-α(1 → 2)β-Fru after biochemical analyses. By partial enzyme purification the presence of discrete lychnose synthase (raffinose:raffinose 1Fru galactosyltransferase) and stellariose synthase (raffinose:lychnose 4Glc galactosyltransferase) activities were shown.A model is presented explaining the structural diversity of GOS in S. media. In the absence of stachyose, raffinose is further elongated by lychnose synthase and stellariose synthase to produce lychnose, mediose and stellariose. Most likely, these compounds are also subject to partial trimming by endogenous α-galactosidases.  相似文献   
24.
Novel antiangiogenic strategies with complementary mechanisms are needed to maximize efficacy and minimize resistance to current angiogenesis inhibitors. We explored the therapeutic potential and mechanisms of alphaPlGF, an antibody against placental growth factor (PlGF), a VEGF homolog, which regulates the angiogenic switch in disease, but not in health. alphaPlGF inhibited growth and metastasis of various tumors, including those resistant to VEGF(R) inhibitors (VEGF(R)Is), and enhanced the efficacy of chemotherapy and VEGF(R)Is. alphaPlGF inhibited angiogenesis, lymphangiogenesis, and tumor cell motility. Distinct from VEGF(R)Is, alphaPlGF prevented infiltration of angiogenic macrophages and severe tumor hypoxia, and thus, did not switch on the angiogenic rescue program responsible for resistance to VEGF(R)Is. Moreover, it did not cause or enhance VEGF(R)I-related side effects. The efficacy and safety of alphaPlGF, its pleiotropic and complementary mechanism to VEGF(R)Is, and the negligible induction of an angiogenic rescue program suggest that alphaPlGF may constitute a novel approach for cancer treatment.  相似文献   
25.
Duchenne muscular dystrophy (DMD) is a fatal and incurable muscle degenerative disorder. We identify a function of the protease urokinase plasminogen activator (uPA) in mdx mice, a mouse model of DMD. The expression of uPA is induced in mdx dystrophic muscle, and the genetic loss of uPA in mdx mice exacerbated muscle dystrophy and reduced muscular function. Bone marrow (BM) transplantation experiments revealed a critical function for BM-derived uPA in mdx muscle repair via three mechanisms: (1) by promoting the infiltration of BM-derived inflammatory cells; (2) by preventing the excessive deposition of fibrin; and (3) by promoting myoblast migration. Interestingly, genetic loss of the uPA receptor in mdx mice did not exacerbate muscular dystrophy in mdx mice, suggesting that uPA exerts its effects independently of its receptor. These findings underscore the importance of uPA in muscular dystrophy.  相似文献   
26.
Sperm cells represent a special exocytotic system since mature sperm cells contain only one large secretory vesicle, the acrosome, which fuses with the overlying plasma membrane during the fertilization process. Acrosomal exocytosis is believed to be regulated by activation of SNARE proteins. In this paper, we identified specific members of the SNARE protein family, i.e., the t-SNAREs syntaxin1 and 2, and the v-SNARE VAMP, present in boar sperm cells. Both syntaxins were predominantly found in the plasma membrane whereas v-SNAREs are mainly located in the outer acrosomal membrane of these cells. Under non-capacitating conditions both syntaxins and VAMP are scattered in well-defined punctate structures over the entire sperm head. Bicarbonate-induced in vitro activation in the presence of BSA causes a relocalization of these SNAREs to a more homogeneous distribution restricted to the apical ridge area of the sperm head, exactly matching the site of sperm zona binding and subsequent induced acrosomal exocytosis. This redistribution of syntaxin and VAMP depends on cholesterol depletion and closely resembles the previously reported redistribution of lipid raft marker proteins. Detergent-resistant membrane isolation and subsequent analysis shows that a significant proportion of syntaxin emerges in the detergent-resistant membrane (raft) fraction under such conditions, which is not the case under those conditions where cholesterol depletion is blocked. The v-SNARE VAMP displays a similar cholesterol depletion-dependent lateral and raft redistribution. Taken together, our results indicate that redistribution of syntaxin and VAMP during capacitation depends on association of these SNAREs with lipid rafts and that such a SNARE-raft association may be essential for spatial control of exocytosis and/or regulation of SNARE functioning.  相似文献   
27.
Most molecular processes during plant development occur with a particular spatio-temporal specificity. Thus far, it has remained technically challenging to capture dynamic protein-protein interactions within a growing organ, where the interplay between cell division and cell expansion is instrumental. Here, we combined high-resolution sampling of the growing maize (Zea mays) leaf with tandem affinity purification followed by mass spectrometry. Our results indicate that the growth-regulating SWI/SNF chromatin remodeling complex associated with ANGUSTIFOLIA3 (AN3) was conserved within growing organs and between dicots and monocots. Moreover, we were able to demonstrate the dynamics of the AN3-interacting proteins within the growing leaf, since copurified GROWTH-REGULATING FACTORs (GRFs) varied throughout the growing leaf. Indeed, GRF1, GRF6, GRF7, GRF12, GRF15, and GRF17 were significantly enriched in the division zone of the growing leaf, while GRF4 and GRF10 levels were comparable between division zone and expansion zone in the growing leaf. These dynamics were also reflected at the mRNA and protein levels, indicating tight developmental regulation of the AN3-associated chromatin remodeling complex. In addition, the phenotypes of maize plants overexpressing miRNA396a-resistant GRF1 support a model proposing that distinct associations of the chromatin remodeling complex with specific GRFs tightly regulate the transition between cell division and cell expansion. Together, our data demonstrate that advancing from static to dynamic protein-protein interaction analysis in a growing organ adds insights in how developmental switches are regulated.  相似文献   
28.
29.
Consumption of meals with different macronutrient contents, especially high in carbohydrates, may influence the stress-induced physiological and psychological response. The objective of this study was to investigate effects of consumption of a high-protein vs. high-carbohydrate meal on the physiological cortisol response and psychological mood response. Subjects (n = 38, 19 m/19f, age =25 ± 9 yrs, BMI = 25.0 ± 3.3 kg/m2) came to the university four times, fasted, for either condition: rest-protein, stress-protein, rest-carbohydrate, stress-carbohydrate (randomized cross-over design). Stress was induced by means of a psychological computer-test. The test-meal was either a high-protein meal (En% P/C/F 65/5/30) or a high-carbohydrate meal (En% P/C/F 6/64/30), both meals were matched for energy density (4 kJ/g) and daily energy requirements (30%). Per test-session salivary cortisol levels, appetite profile, mood state and level of anxiety were measured. High hunger, low satiety (81 ± 16, 12 ± 15 mm VAS) confirmed the fasted state. The stress condition was confirmed by increased feelings of depression, tension, anger, anxiety (AUC stress vs. rest p < 0.02). Consumption of the high-protein vs. high-carbohydrate meal did not affect feelings of depression, tension, anger, anxiety. Cortisol levels did not differ between the four test-sessions in men and women (AUC nmol·min/L p > 0.1). Consumption of the test-meals increased cortisol levels in men in all conditions (p < 0.01), and in women in the rest-protein and stress-protein condition (p < 0.03). Men showed higher cortisol levels than women (AUC nmol·min/L p < 0.0001). Consumption of meals with different macronutrient contents, i.e. high-protein vs. high-carbohydrate, does not influence the physiological and psychological response differentially. Men show a higher meal-induced salivary cortisol response compared with women.  相似文献   
30.
The precise role of chemokines in neovascularization during inflammation or tumor growth is not yet fully understood. We show here that the chemokines granulocyte chemotactic protein-2 (GCP-2/CXCL6), interleukin-8 (IL-8/CXCL8), and monocyte chemotactic protein-1 (MCP-1/CCL2) are co-induced in microvascular endothelial cells after stimulation with pro-inflammatory stimuli. In contrast with its weak proliferative effect on endothelial cells, GCP-2 synergized with MCP-1 in neutrophil chemotaxis. This synergy may represent a mechanism for tumor development and metastasis by providing efficient leukocyte infiltration in the absence of exogenous immune modulators. To mimic endothelial cell-derived GCP-2 in vivo, GCP-2 was intravenously injected and shown to provoke a dose-dependent systemic response, composed of an immediate granulopenia, followed by a profound granulocytosis. By immunohistochemistry, GCP-2 was further shown to be expressed by endothelial cells from human patients with gastrointestinal (GI) malignancies. GCP-2 staining correlated with leukocyte infiltration into the tumor and with the expression of the matrix metalloproteinase-9 (MMP-9/gelatinase B). Together with previous findings, these data suggest that the production of GCP-2 by endothelial cells within the tumor can contribute to tumor development through neovascularization due to endothelial cell chemotaxis and to tumor cell invasion and metastasis by attracting and activating neutrophils loaded with proteases that promote matrix degradation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号