首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5459篇
  免费   378篇
  5837篇
  2022年   34篇
  2021年   66篇
  2020年   20篇
  2019年   36篇
  2018年   55篇
  2017年   66篇
  2016年   80篇
  2015年   136篇
  2014年   165篇
  2013年   294篇
  2012年   264篇
  2011年   284篇
  2010年   157篇
  2009年   171篇
  2008年   267篇
  2007年   243篇
  2006年   282篇
  2005年   248篇
  2004年   284篇
  2003年   234篇
  2002年   235篇
  2001年   197篇
  2000年   176篇
  1999年   183篇
  1998年   74篇
  1997年   74篇
  1996年   46篇
  1995年   48篇
  1994年   62篇
  1993年   48篇
  1992年   103篇
  1991年   108篇
  1990年   102篇
  1989年   90篇
  1988年   74篇
  1987年   61篇
  1986年   93篇
  1985年   79篇
  1984年   85篇
  1983年   63篇
  1982年   43篇
  1981年   41篇
  1980年   31篇
  1979年   50篇
  1978年   39篇
  1977年   40篇
  1976年   29篇
  1975年   17篇
  1974年   25篇
  1973年   22篇
排序方式: 共有5837条查询结果,搜索用时 15 毫秒
151.
Adaptation to temperature fluctuation is essential for the survival of all living organisms. Although extensive research has been done on heat and cold shock responses, there have been no reports on global responses to cold shock below 10°C or near-freezing. We examined the genome-wide expression in Saccharomyces cerevisiae, following exposure to 4°C. Hierarchical cluster analysis showed that the gene expression profile following 4°C exposure from 6 to 48 h was different from that at continuous 4°C culture. Under 4°C exposure, the genes involved in trehalose and glycogen synthesis were induced, suggesting that biosynthesis and accumulation of those reserve carbohydrates might be necessary for cold tolerance and energy preservation. The observed increased expression of phospholipids, mannoproteins, and cold shock proteins (e.g., TIP1) is consistent with membrane maintenance and increased permeability of the cell wall at 4°C. The induction of heat shock proteins and glutathione at 4°C may be required for revitalization of enzyme activity, and for detoxification of active oxygen species, respectively. The genes with these functions may provide the ability of cold tolerance and adaptation to yeast cells.  相似文献   
152.
The aim of this study was to examine whether a neuroprotector, PBN (alpha-phenyl-tert-butyl nitrone), enhances apoptosis induced by hyperthermia, which generates superoxide (O2-) intracellularly, since the release of nitric oxide (NO) from PBN under oxidative stress has been reported. When human myelomonocytic lymphoma U937 cells were treated with hyperthermia (44 degrees C, 10 min) and PBN, an increase in the concentration of nitrite in the culture medium, and a decrease in the hyperthermia-induced production of O2- was observed. Imaging using a fluorescence dye for intracellular NO, diaminofluorescein-2 diacetate (DAF-2 DA), revealed the formation of NO in the apoptotic cells treated with hyperthermia and PBN combined. Apoptotic endpoints were significantly enhanced by the combined treatment: a decrease in mitochondrial trans-membrane potential, cleavage of Bid, release of cytochrome c, and activation of caspase-8 and -3. An increase in the intracellular Ca2+ concentration ([Ca2+]i), externalization of Fas, and decrease in Hsp70 and phosphorylated HSF1 were observed following the combined treatment. Furthermore, scavengers of NO an d ONOO- significantly inhibited the enhancement of apoptosis, the externalization of Fas and the increase in [Ca2+]i. These results suggest that, (1) NO is released from PBN by hyperthermia, and subsequently reacts with O2- to form ONOO-, (2) NO and ONOO- are involved in the enhancement of apoptosis through Fas-mitochondria-caspase and [Ca2+]i-dependent pathways, and (3) a decrease in Hsp70 and phosphorylated HSF1 also contributed to the enhancement of apoptosis.  相似文献   
153.
The major aluminum (Al) tolerance gene in wheat ALMT1 confers. An Al-activated efflux of malate from root apices. We determined the genomic structure of the ALMT1 gene and found it consists of 6 exons interrupted by 5 introns. Sequencing a range of wheat genotypes identified 3 alleles for ALMT1, 1 of which was identical to the ALMT1 gene from an Aegilops tauschii accession. The ALMT1 gene was mapped to chromosome 4DL using 'Chinese Spring' deletion lines, and loss of ALMT1 coincided with the loss of both Al tolerance and Al-activated malate efflux. Aluminium tolerance in each of 5 different doubled-haploid populations was found to be conditioned by a single major gene. When ALMT1 was polymorphic between the parental lines, QTL and linkage analyses indicated that ALMT1 mapped to chromosome 4DL and cosegregated with Al tolerance. In 2 populations examined, Al tolerance also segregated with a greater capacity for Al-activated malate efflux. Aluminium tolerance was not associated with a particular coding allele for ALMT1, but was significantly correlated with the relative level of ALMT1 expression. These findings suggest that the Al tolerance in a diverse range of wheat genotypes is primarily conditioned by ALMT1.  相似文献   
154.
155.
Unlocking the barley genome by chromosomal and comparative genomics   总被引:2,自引:0,他引:2  
We used a novel approach that incorporated chromosome sorting, next-generation sequencing, array hybridization, and systematic exploitation of conserved synteny with model grasses to assign ~86% of the estimated ~32,000 barley (Hordeum vulgare) genes to individual chromosome arms. Using a series of bioinformatically constructed genome zippers that integrate gene indices of rice (Oryza sativa), sorghum (Sorghum bicolor), and Brachypodium distachyon in a conserved synteny model, we were able to assemble 21,766 barley genes in a putative linear order. We show that the barley (H) genome displays a mosaic of structural similarity to hexaploid bread wheat (Triticum aestivum) A, B, and D subgenomes and that orthologous genes in different grasses exhibit signatures of positive selection in different lineages. We present an ordered, information-rich scaffold of the barley genome that provides a valuable and robust framework for the development of novel strategies in cereal breeding.  相似文献   
156.
Virus free plants of Rehmannia glutinosa Libosch. var. purpurea Makino were obtained through meristem tip tissue cultures from plants infected with a mixture of tabocco mosaic virus(TMV), a member of the carlavirus group, and an unknown spherical virus. The re-infection rate of the virus free plants by TMV in the field was determined by enzyme linked immunosorbent assay(ELISA). Twenty seven percent of the plants were re-infected during the first year, 31 % by the end of second year, and 63 % by the end of the third year. The yield of root and iridoid glycoside contents gradually decreased each year. These results led to the conclusion that virus infection causes marked decrease of the yield of roots and productivity of secondary metabolites.  相似文献   
157.
158.
A novel enzyme, which was named Nα-benzyloxycarbonyl amino acid urethane hydrolase, was purified from a cell-free extract of Streptococcus faecalis R ATCC 8043, using Nα-benzyloxycarbonyl glycine as substrate. The enzyme was purified 1300-fold with an activity yield of 8%. The purified enzyme was homogeneous by disc electrophoresis. The molecular weight of the native enzyme is about 220,000 by gel filtration, and a molecular weight of 32,000 was determined for the reduced and denatured enzyme by gel electrophoresis in sodium dodecyl sulfate. The isoelectric point was 4.48. The enzyme was inhibited by p-chloromercuribenzoate. The presence of divalent cations (i.e., Co2+ or Zn2+) is essential for its activity.  相似文献   
159.
After fertilization, the sperm and oocyte genomes undergo extensive epigenetic reprogramming to form a totipotent zygote. The dynamic epigenetic changes during early embryo development primarily involve DNA methylation and demethylation. We have previously identified Gse (gonad-specific expression gene) to be expressed specifically in germ cells and early embryos. Its encoded protein GSE is predominantly localized in the nuclei of cells from the zygote to blastocyst stages, suggesting possible roles in the epigenetic changes occurring during early embryo development. Here, we report the involvement of GSE in epigenetic reprogramming of the paternal genome during mouse zygote development. Preferential binding of GSE to the paternal chromatin was observed from pronuclear stage 2 (PN2) onward. A knockdown of GSE by antisense RNA in oocytes produced no apparent effect on the first and second cell cycles in preimplantation embryos, but caused a significant reduction in the loss of 5-methylcytosine (5mC) and the accumulation of 5-hydroxymethylcytosine (5hmC) in the paternal pronucleus. Furthermore, DNA methylation levels in CpG sites of LINE1 transposable elements, Lemd1, Nanog and the upstream regulatory region of the Oct4 (also known as Pou5f1) gene were clearly increased in GSE-knockdown zygotes at mid-pronuclear stages (PN3-4), but the imprinted H19-differential methylated region was not affected. Importantly, DNA immunoprecipitation of 5mC and 5hmC also indicates that knockdown of GSE in zygotes resulted in a significant reduction of the conversion of 5mC to 5hmC on LINE1. Therefore, our results suggest an important role of maternal GSE for mediating active DNA demethylation in the zygote.  相似文献   
160.
Perchloric acid-soluble protein (PSP) is highly conserved during evolution from bacteria to mammals. Although PSP has been recognized as an inhibitor of translation and proliferation in vitro, its precise biological role has not yet been elucidated. Since we previously found similar distributions for PSP and the endoplasmic reticulum (ER) and Golgi complex, the intracellular distribution of PSP was analyzed in more detail. Immunofluorescence studies indicated that PSP co-localized with the ER and Golgi complex, since the distribution pattern of PSP was well matched to both of these organelles. An immunoelectron microscopic study revealed PSP was located not only in the cytosol but also on the surface of the outer ER membrane. Since PSP was present on the ER, we speculated that it may be associated with ER function. Therefore, we analyzed whether or not the ER stress response, which is one of the ER functions, affected PSP expression. The results showed that various ER stressors (thapsigargin, A23187, tunicamycin, brefeldin A, and cisplatin) provoked a dramatic change in the localization of PSP from outside of the nucleus to inside the nucleus within 3 h. Moreover, the ER stressors induced PSP expression. These results suggest that PSP is involved in the cellular response to ER stressors, and that the change in localization of PSP from the ER to the nucleus may be associated with ER stress responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号