首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   475篇
  免费   38篇
  513篇
  2023年   1篇
  2022年   13篇
  2021年   17篇
  2020年   10篇
  2019年   11篇
  2018年   10篇
  2017年   16篇
  2016年   11篇
  2015年   22篇
  2014年   34篇
  2013年   35篇
  2012年   47篇
  2011年   41篇
  2010年   21篇
  2009年   23篇
  2008年   23篇
  2007年   33篇
  2006年   22篇
  2005年   26篇
  2004年   18篇
  2003年   14篇
  2002年   13篇
  2001年   9篇
  2000年   9篇
  1999年   6篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1989年   2篇
  1987年   1篇
  1986年   2篇
  1984年   2篇
  1983年   1篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有513条查询结果,搜索用时 15 毫秒
81.
82.
83.
Cancer is a complex disease that involves aberrant gene expression regulation. Discriminating the modified expression patterns driving tumor biology from the many that have no or little contribution is important for understanding cancer molecular basis. Recurrent deregulation patterns observed in multiple cancer types are enriched for such driver events. Here, we studied splicing alterations in hundreds of matched tumor and normal RNA-seq samples of eight solid cancer types. We found hundreds of cassette exons for which splicing was altered in multiple cancer types and identified a set of highly frequent altered splicing events. Specific splicing regulators, including RBFOX2, MBNL1/2 and QKI, appear to account for many splicing alteration events in multiple cancer types. Together, our results provide a first global analysis of regulated splicing alterations in cancer and identify common events with a potential causative role in solid tumor development.  相似文献   
84.
The induced gamma-band EEG response (iGBR) recorded on the scalp is widely assumed to reflect synchronous neural oscillation associated with object representation, attention, memory, and consciousness. The most commonly reported EEG iGBR is a broadband transient increase in power at the gamma range approximately 200-300 ms following stimulus onset. A conspicuous feature of this iGBR is the trial-to-trial poststimulus latency variability, which has been insufficiently addressed. Here, we show, using single-trial analysis of concomitant EEG and eye tracking, that this iGBR is tightly time locked to the onset of involuntary miniature eye movements and reflects a saccadic "spike potential." The time course of the iGBR is related to an increase in the rate of saccades following a period of poststimulus saccadic inhibition. Thus, whereas neuronal gamma-band oscillations were shown conclusively with other methods, the broadband transient iGBR recorded by scalp EEG reflects properties of miniature saccade dynamics rather than neuronal oscillations.  相似文献   
85.
Ischaemic stroke patients treated with Selective Serotonin Reuptake Inhibitors (SSRI) show improved motor, cognitive and executive functions, but the underlying mechanism(s) are incompletely understood. Here, we report that cerebral arterioles in the rat brain superfused with therapeutically effective doses of the SSRI fluoxetine showed consistent, dose‐dependent vasodilatation (by 1.2 to 1.6‐fold), suppressible by muscarinic and nitric oxide synthase (NOS) antagonists [atropine, NG‐nitro‐l ‐arginine methyl ester (l ‐NAME)] but resistant to nicotinic and serotoninergic antagonists (mecamylamine, methylsergide). Fluoxetine administered 10–30 min. following experimental vascular photo‐thrombosis increased arterial diameter (1.3–1.6), inducing partial, but lasting reperfusion of the ischaemic brain. In brain endothelial b.End.3 cells, fluoxetine induced rapid muscarinic receptor‐dependent increases in intracellular [Ca2+] and promoted albumin‐ and eNOS‐dependent nitric oxide (NO) production and HSP90 interaction. In vitro, fluoxetine suppressed recombinant human acetylcholinesterase (rhAChE) activity only in the presence of albumin. That fluoxetine induces vasodilatation of cerebral arterioles suggests co‐promotion of endothelial muscarinic and nitric oxide signalling, facilitated by albumin‐dependent inhibition of serum AChE.  相似文献   
86.
Photosystem II (PSII), the enzyme responsible for photosynthetic oxygen evolution, is a rapidly turned over membrane protein complex. However, the factors that regulate biogenesis of PSII are poorly defined. Previous proteomic analysis of the PSII preparations from the cyanobacterium Synechocystis sp PCC 6803 detected a novel protein, Psb29 (Sll1414), homologs of which are found in all cyanobacteria and vascular plants with sequenced genomes. Deletion of psb29 in Synechocystis 6803 results in slower growth rates under high light intensities, increased light sensitivity, and lower PSII efficiency, without affecting the PSII core electron transfer activities. A T-DNA insertion line in the PSB29 gene in Arabidopsis thaliana displays a phenotype similar to that of the Synechocystis mutant. This plant mutant grows slowly and exhibits variegated leaves, and its PSII activity is light sensitive. Low temperature fluorescence emission spectroscopy of both cyanobacterial and plant mutants shows an increase in the proportion of uncoupled proximal antennae in PSII as a function of increasing growth light intensities. The similar phenotypes observed in both plant and cyanobacterial mutants demonstrate that the function of Psb29 has been conserved throughout the evolution of oxygenic photosynthetic organisms and suggest a role for the Psb29 protein in the biogenesis of PSII.  相似文献   
87.
Activated factor Xa (FXa) is traditionally known as an important player in the coagulation cascade responsible for thrombin generation. Long considered a passive bystander, it is now evident that FXa exerts direct effects on a wide variety of cell types via activation of its two main receptors, protease-activated receptor-1 (PAR-1) and PAR-2. Recent findings suggest that PAR-2 plays a crucial role in fibro-proliferative diseases such as fibrosis, tissue remodeling and cancer and point towards FXa as the important mediator coordinating the interface between coagulation and disease progression. Here, we provide an overview of the FXa signaling pathways that mediate its effects in pathophysiology and explore the potential therapeutic implications of targeting FXa; in terms of arresting disease progression, the modulation of FXa activity might be more important than the modulation of FVIIa or thrombin.  相似文献   
88.
Dravet syndrome (DS) is a genetically determined epileptic encephalopathy mainly caused by de novo mutations in the SCN1A gene. Since 2003, we have performed molecular analyses in a large series of patients with DS, 27% of whom were negative for mutations or rearrangements in SCN1A. In order to identify new genes responsible for the disorder in the SCN1A-negative patients, 41 probands were screened for micro-rearrangements with Illumina high-density SNP microarrays. A hemizygous deletion on chromosome Xq22.1, encompassing the PCDH19 gene, was found in one male patient. To confirm that PCDH19 is responsible for a Dravet-like syndrome, we sequenced its coding region in 73 additional SCN1A-negative patients. Nine different point mutations (four missense and five truncating mutations) were identified in 11 unrelated female patients. In addition, we demonstrated that the fibroblasts of our male patient were mosaic for the PCDH19 deletion. Patients with PCDH19 and SCN1A mutations had very similar clinical features including the association of early febrile and afebrile seizures, seizures occurring in clusters, developmental and language delays, behavioural disturbances, and cognitive regression. There were, however, slight but constant differences in the evolution of the patients, including fewer polymorphic seizures (in particular rare myoclonic jerks and atypical absences) in those with PCDH19 mutations. These results suggest that PCDH19 plays a major role in epileptic encephalopathies, with a clinical spectrum overlapping that of DS. This disorder mainly affects females. The identification of an affected mosaic male strongly supports the hypothesis that cellular interference is the pathogenic mechanism.  相似文献   
89.
Cleavage fragments of de novo synthesized vimentin were recently reported to interact with phosphorylated Erk1 and Erk2 MAP kinases (pErk) in injured sciatic nerve, thus linking pErk to a signaling complex retrogradely transported on importins and dynein. Here we clarify the structural basis for this interaction, which explains how pErk is protected from dephosphorylation while bound to vimentin. Pull-down and ELISA experiments revealed robust calcium-dependent binding of pErk to the second coiled-coil domain of vimentin, with observed affinities of binding increasing from 180 nM at 0.1 microM calcium to 15 nM at 10 microM calcium. In contrast there was little or no binding of non-phosphorylated Erk to vimentin under these conditions. Geometric and electrostatic complementarity docking generated a number of solutions wherein vimentin binding to pErk occludes the lip containing the phosphorylated residues in the kinase. Binding competition experiments with Erk peptides confirmed a solution in which vimentin covers the phosphorylation lip in pErk, interacting with residues above and below the lip. The same peptides inhibited pErk binding to the dynein complex in sciatic nerve axoplasm, and interfered with protection from phosphatases by vimentin. Thus, a soluble intermediate filament fragment interacts with a signaling kinase and protects it from dephosphorylation by calcium-dependent steric hindrance.  相似文献   
90.
The involvement of type I chaperonins in bacterial and organellar protein folding has been well-documented. In E. coli and mitochondria, these ubiquitous and highly conserved proteins form chaperonin oligomers of identical 60 kDa subunits (cpn60), while in chloroplasts, two distinct cpn60 α and β subunit types co-exist together. The primary sequence of α and β subunits is ~50% identical, similar to their respective homologies to the bacterial GroEL. Moreover, the A. thaliana genome contains two α and four β genes. The functional significance of this variability in plant chaperonin proteins has not yet been elucidated. In order to gain insight into the functional variety of the chloroplast chaperonin family members, we reconstituted β homo-oligomers from A. thaliana following their expression in bacteria and subjected them to a structure-function analysis. Our results show for the first time, that A. thaliana β homo-oligomers can function in vitro with authentic chloroplast co-chaperonins (ch-cpn10 and ch-cpn20). We also show that oligomers made up of different β subunit types have unique properties and different preferences for co-chaperonin partners. We propose that chloroplasts may contain active β homo-oligomers in addition to hetero-oligomers, possibly reflecting a variety of cellular roles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号