首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   413篇
  免费   38篇
  451篇
  2024年   2篇
  2023年   3篇
  2022年   6篇
  2021年   9篇
  2020年   6篇
  2019年   7篇
  2018年   7篇
  2017年   9篇
  2016年   16篇
  2015年   23篇
  2014年   30篇
  2013年   19篇
  2012年   21篇
  2011年   34篇
  2010年   19篇
  2009年   10篇
  2008年   22篇
  2007年   23篇
  2006年   23篇
  2005年   13篇
  2004年   16篇
  2003年   15篇
  2002年   11篇
  2001年   10篇
  2000年   9篇
  1999年   6篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1994年   2篇
  1993年   6篇
  1992年   7篇
  1991年   6篇
  1990年   5篇
  1989年   4篇
  1988年   4篇
  1985年   4篇
  1984年   3篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1978年   2篇
  1970年   3篇
  1968年   2篇
  1966年   2篇
  1962年   1篇
  1955年   1篇
  1953年   1篇
  1948年   1篇
排序方式: 共有451条查询结果,搜索用时 10 毫秒
111.
112.
The North Island Kaka Nestor meridionalis septentrionalis , an endemic New Zealand parrot, displays a disproportionate degree of sexual dimorphism in bill-size, males being 13.6% and 12.4% larger than females in culmen-length and -depth respectively, but only 2.0% and 4.2% larger in tarsus-length and cube root of body-mass. Culmen-length provides a reliable means of sexing Kakas if the age-class of each bird is known; all adult and subadult males had exposed culmens ≥ 47 mm long, while those of females were less than this value. Juveniles with culmen-lengths in excess of 44 mm were male. Similar sexual dimorphism in the Kea N. notabilis , the sole extant congener of the Kaka, suggests a phylogenetic basis for this condition. The monogamous mating system of the Kaka and Kea, together with the prolonged provisioning of females and young by males in both species, suggests that selection for enhanced male provisioning ability, rather than sexual selection, could be maintaining sexual bill dimorphism in these species.  相似文献   
113.
Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT.  相似文献   
114.
The Functional Annotation of Animal Genomes (FAANG) Consortium recently held a Gathering On FAANG (GO‐FAANG) Workshop in Washington, DC on October 7–8, 2015. This consortium is a grass‐roots organization formed to advance the annotation of newly assembled genomes of domesticated and non‐model organisms ( www.faang.org ). The workshop gathered together from around the world a group of 100+ genome scientists, administrators, representatives of funding agencies and commodity groups to discuss the latest advancements of the consortium, new perspectives, next steps and implementation plans. The workshop was streamed live and recorded, and all talks, along with speaker slide presentations, are available at www.faang.org . In this report, we describe the major activities and outcomes of this meeting. We also provide updates on ongoing efforts to implement discussions and decisions taken at GO‐FAANG to guide future FAANG activities. In summary, reference datasets are being established under pilot projects; plans for tissue sets, morphological classification and methods of sample collection for different tissues were organized; and core assays and data and meta‐data analysis standards were established.  相似文献   
115.
116.
Synonymous codons encode the same amino acid, but differ in other biophysical properties. The evolutionary selection of codons whose properties are optimal for a cell generates the phenomenon of codon bias. Although recent studies have shown strong effects of codon usage changes on protein expression levels and cellular physiology, no translational control mechanism is known that links codon usage to protein expression levels. Here, we demonstrate a novel translational control mechanism that responds to the speed of ribosome movement immediately after the start codon. High initiation rates are only possible if start codons are liberated sufficiently fast, thus accounting for the observation that fast codons are overrepresented in highly expressed proteins. In contrast, slow codons lead to slow liberation of the start codon by initiating ribosomes, thereby interfering with efficient translation initiation. Codon usage thus evolved as a means to optimise translation on individual mRNAs, as well as global optimisation of ribosome availability.  相似文献   
117.
Increasing preclinical and clinical evidence underscores the strong and rapid antidepressant properties of the glutamate-modulating NMDA receptor antagonist ketamine. Targeting the glutamatergic system might thus provide a novel molecular strategy for antidepressant treatment. Since glutamate is the most abundant and major excitatory neurotransmitter in the brain, pathophysiological changes in glutamatergic signaling are likely to affect neurobehavioral plasticity, information processing and large-scale changes in functional brain connectivity underlying certain symptoms of major depressive disorder. Using resting state functional magnetic resonance imaging (rsfMRI), the „dorsal nexus “(DN) was recently identified as a bilateral dorsal medial prefrontal cortex region showing dramatically increased depression-associated functional connectivity with large portions of a cognitive control network (CCN), the default mode network (DMN), and a rostral affective network (AN). Hence, Sheline and colleagues (2010) proposed that reducing increased connectivity of the DN might play a critical role in reducing depression symptomatology and thus represent a potential therapy target for affective disorders. Here, using a randomized, placebo-controlled, double-blind, crossover rsfMRI challenge in healthy subjects we demonstrate that ketamine decreases functional connectivity of the DMN to the DN and to the pregenual anterior cingulate (PACC) and medioprefrontal cortex (MPFC) via its representative hub, the posterior cingulate cortex (PCC). These findings in healthy subjects may serve as a model to elucidate potential biomechanisms that are addressed by successful treatment of major depression. This notion is further supported by the temporal overlap of our observation of subacute functional network modulation after 24 hours with the peak of efficacy following an intravenous ketamine administration in treatment-resistant depression.  相似文献   
118.

Background and Aims

Although urban gardens provide opportunities for pollinators in an otherwise inhospitable environment, most garden plants are not native to the recipient biogeographical region and their value to local pollinators is disputed. This study tested the hypothesis that bumblebees foraging in English urban gardens preferentially visited sympatric Palaearctic-range plants over species originating outside their native range.

Methods

Twenty-seven surveys of flower availability and bumblebee visitation (Bombus spp.) were conducted over a 3-month summer period. Plants were categorized according to whether they were native British, Palaearctic or non-Palaearctic in origin. A phylogeny of the 119 plant species recorded was constructed and the relationship between floral abundance and the frequency of pollinator visits investigated by means of phylogenetically independent contrasts. Differentiation in utilization of plant species by the five bumblebee species encountered was investigated using niche overlap analyses.

Key Results

There was conflicting evidence for preferential use of native-range Palaearctic plant species by bumblebees depending on which plants were included in the analysis. Evidence was also found for niche partitioning between species based on respective preferences for native and non-native biogeographical range plants. Two bumblebees (Bombus terrestris and B. pratorum) concentrated their foraging activity on non-Palaearctic plants, while two others (B. hortorum and B. pascourum) preferred Palaearctic species.

Conclusions

The long-running debate about the value of native and non-native garden plants to pollinators probably stems from a failure to properly consider biogeographical overlap between plant and pollinator ranges. Gardeners can encourage pollinators without consideration of plant origin or bias towards ‘local’ biogeographical species. However, dietary specialist bumblebees seem to prefer plants sympatric with their own biogeographical range and, in addition to the cultivation of these species in gardens, provision of native non-horticultural (‘weed’) species may also be important for pollinator conservation.  相似文献   
119.
The synthesis of nitric oxide by brain slices has been demonstrated in several laboratories. In addition, in vitro studies have demonstrated stimulation of nitric oxide synthesis by excitatory amino acid receptor agonists. These data have led to the hypothesis that this readily diffusible "intercellular messenger molecule" acts to generate a cascade effect by activating guanylate cyclase in several cell types and thereby augment levels of the second messenger cyclic GMP (cGMP). Therefore, we evaluated this hypothesis in vivo, by testing the actions of the nitric oxide synthase inhibitor N-mono-methyl-L-arginine (NMMA) on elevations in level of mouse cerebellar cGMP generated by excitatory amino acid receptor agonists. The stimulatory effects of D-serine, quisqualate, and kainate were all found to be antagonized by this enzyme inhibitor. In addition, NMMA antagonized the increases in cerebellar cGMP level elicited by harmaline and pentylenetetrazole, pharmacological agents that augment endogenous excitatory amino acid transmission. Our data are, therefore, the first in vivo demonstration that nitric oxide is an important "messenger molecule" in the cerebellum, mediating the actions of kainate, quisqualate, and N-methyl-D-aspartate receptor agonists on guanylate cyclase. These data are consistent with previous in vitro findings with kainate and N-methyl-D-aspartate.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号