首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   21篇
  149篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2016年   3篇
  2015年   1篇
  2014年   4篇
  2013年   6篇
  2012年   6篇
  2011年   10篇
  2010年   7篇
  2009年   6篇
  2008年   8篇
  2007年   9篇
  2006年   9篇
  2005年   16篇
  2004年   17篇
  2003年   5篇
  2002年   14篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   3篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
排序方式: 共有149条查询结果,搜索用时 15 毫秒
81.
We established a novel experimental model for human T-cell leukemia virus type 1 (HTLV-1)-induced tumor using NOD-SCID/gammac(null) (NOG) mice. This model is very useful for investigating the mechanism of tumorigenesis and malignant cell growth of adult T-cell leukemia (ATL)/lymphoma, which still remains unclear. Nine HTLV-1-infected cell lines were inoculated subcutaneously in the postauricular region of NOG mice. As early as 2 to 3 weeks after inoculation, seven cell lines produced a visible tumor while two transformed cell lines failed to do so. Five of seven lines produced a progressively growing large tumor with leukemic infiltration of the cells in various organs that eventually killed the animals. Leukemic cell lines formed soft tumors, whereas some transformed cell lines developed into hemorrhagic hard tumors in NOG mice. One of the leukemic cell lines, ED-40515(-), was unable to produce visible tumors in NOD-SCID mice with a common gamma-chain after 2 weeks. In vivo NF-kappaB DNA binding activity of the ED-40515(-) cell line was higher and the NF-kappaB components were changed compared to cells in vitro. Bay 11-7082, a specific and effective NF-kappaB inhibitor, prevented tumor growth at the sites of the primary region and leukemic infiltration in various organs of NOG mice. This in vivo model of ATL could provide a novel system for use in clarifying the mechanism of growth of HTLV-1-infected cells as well as for the development of new drugs against ATL.  相似文献   
82.
Biosensors based on the principle of Förster (or fluorescence) resonance energy transfer (FRET) have shed new light on the spatiotemporal dynamics of signaling molecules. Among them, intramolecular FRET biosensors have been increasingly used due to their high sensitivity and user-friendliness. Time-consuming optimizations by trial and error, however, obstructed the development of intramolecular FRET biosensors. Here we report an optimized backbone for rapid development of highly sensitive intramolecular FRET biosensors. The key concept is to exclude the “orientation-dependent” FRET and to render the biosensors completely “distance-dependent” with a long, flexible linker. We optimized a pair of fluorescent proteins for distance-dependent biosensors, and then developed a long, flexible linker ranging from 116 to 244 amino acids in length, which reduced the basal FRET signal and thereby increased the gain of the FRET biosensors. Computational simulations provided insight into the mechanisms by which this optimized system was the rational strategy for intramolecular FRET biosensors. With this backbone system, we improved previously reported FRET biosensors of PKA, ERK, JNK, EGFR/Abl, Ras, and Rac1. Furthermore, this backbone enabled us to develop novel FRET biosensors for several kinases of RSK, S6K, Akt, and PKC and to perform quantitative evaluation of kinase inhibitors in living cells.  相似文献   
83.
It has been reported that patients infected with nef-defective human immunodeficiency virus type 1 (HIV-1) do not progress to AIDS; however, mutations that abrogate Nef expression are not common in long-term nonprogressors (LTNPs). We postulated that Nef function might be impaired in LTNPs, irrespective of the presence or absence of detectable amino acid sequence anomalies. To challenge this hypothesis we compared in vitro function of nef alleles that were derived from three groups of Japanese patients: LTNPs, progressors, and asymptomatic carriers (ACs). The patient-derived nef alleles were subcloned into a nef-defective infectious HIV-1 molecular clone and an expression vector. We first examined Nef-dependent enhancement of infection in a single-round infectivity assay by the use of MAGNEF cells, in which Nef is required more strictly for the infection than in the parent MAGI cells. All nef alleles from LTNPs showed reduced enhancement in the infectivity of nef-defective HIV-1 mutants compared to the nef alleles of progressors or ACs. Second, we found that nef alleles from LTNPs were less efficient in CD4 downregulation than those of progressors or ACs. Third, all nef alleles from LTNPs, progressors, and ACs reduced the cell surface expression of major histocompatibility complex class I to a similar level. Last, there was no correlation between Hck-binding activity of Nef and clinical grouping. In conclusion, we detected inefficient enhancement of HIV-1 infectivity and CD4 downregulation by HIV-1 nef alleles of LTNPs. It awaits further study to conclude that these characteristics of nef alleles are the cause or the consequence of the long-term nonprogression after HIV-1 infection.  相似文献   
84.
Rho family G proteins, including Rac and Cdc42, regulate a variety of cellular functions such as morphology, motility, and gene expression. We developed fluorescent resonance energy transfer-based probes which monitored the local balance between the activities of guanine nucleotide exchange factors and GTPase-activating proteins for Rac1 and Cdc42 at the membrane. These probes, named Raichu-Rac and Raichu-Cdc42, consisted of a Cdc42- and Rac-binding domain of Pak, Rac1 or Cdc42, a pair of green fluorescent protein mutants, and a CAAX box of Ki-Ras. With these probes, we video imaged the Rac and Cdc42 activities. In motile HT1080 cells, activities of both Rac and Cdc42 gradually increased toward the leading edge and decreased rapidly when cells changed direction. Under a higher magnification, we observed that Rac activity was highest immediately behind the leading edge, whereas Cdc42 activity was most prominent at the tip of the leading edge. Raichu-Rac and Raichu-Cdc42 were also applied to a rapid and simple assay for the analysis of putative guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) in living cells. Among six putative GEFs and GAPs, we identified KIAA0362/DBS as a GEF for Rac and Cdc42, KIAA1256 as a GEF for Cdc42, KIAA0053 as a GAP for Rac and Cdc42, and KIAA1204 as a GAP for Cdc42. In conclusion, use of these single-molecule probes to determine Rac and Cdc42 activity will accelerate the analysis of the spatiotemporal regulation of Rac and Cdc42 in a living cell.  相似文献   
85.
Kamei D  Yamada M 《Gene》2002,298(1):49-57
JKTBP proteins consisting of two canonical RNA binding domains (RBDs) and a glycine-rich carboxyl domain are nucleocytoplasmic shuttling proteins. We studied in vivo and in vitro interactions between JKTBP and RNA. UV cross-linking experiments on HL-60 cells indicated that following RNA synthesis inhibition by actinomycin D, JKTBP1 accumulated in the cytoplasam is bound to poly(A)(+) RNAs. Recombinant JKTBP1 protein blots could bind poly(A)(+) RNAs, but not poly(A)(-) RNAs. For examination of RNA binding specificity of JKTBP, we enriched high binding sites from pools of 20 nt random sequence-containing RNAs by a selection/amplification method. After eight rounds of a selection and amplification, >20 sequences for each of JKTBPs 1 and 2 were identified. Their consensus high-affinity site was ACUAGC. Approximate K(d)s of JKTBPs 2 and 1 were estimated to be 6-12 nM for the selected sequences by filter binding assays. JKTBP deletion analysis indicated that not individual RBDs, both RBDs and the N-terminal 15 amino acids of the carboxyl domain are required for sequence-specific and high-affinity binding. These results indicate that JKTBP is a sequence-specific RNA binding protein differing from the related heterogeneous nuclear ribonucleoproteins A1 and D.  相似文献   
86.
Plasmid DNA (pDNA) is very important in non-viral gene therapy and DNA vaccination. Unmethylated CpG motifs in bacterial DNA, but not in vertebrate DNA, are known to trigger an inflammatory response, which inhibits gene expression while improving immunological consequences. In this report, we investigated the cytokine secretion induced by pDNA/cationic liposome complexes using murine macrophages. Naked CpG DNA induced tumor necrosis factor-alpha (TNF-alpha) secretion from the macrophages, but DNA without CpG motif did not, demonstrating that the cytokine induction was mediated by CpG motifs. pDNA complexed with cationic liposomes, but not the cationic liposomes alone, produced a significant amount of TNF-alpha from the macrophages. Surprisingly, methylated pDNA and calf thymus DNA complexed with the cationic liposomes were also able to induce TNF-alpha production, indicating that these responses were not dependent on CpG motifs. Taken together, the present study demonstrated that for the first time DNA can stimulate murine macrophages in a CpG motif-independent manner when it is complexed with the cationic liposomes.  相似文献   
87.
88.
Although the consequences of Ras activation have been studied extensively in the context of oncogenesis, its regulation in physiological modes of signal transduction is not well understood. A fluorescent indicator, Raichu-Ras, was fused to the C-terminal hypervariable regions of H-Ras and K-Ras to create indicators for Ras activation within caveolae/rafts (Raichu-tH) and non-raft domains (Raichu-tK) of the plasma membrane, respectively. Raichu-tH was also found abundantly in endomembranes. To monitor Ras activation with high spatial resolution, it is imperative to observe sectioned images of the signals. We have developed a wide-field fluorescence microscope equipped with a digital micromirror device (DMD) to acquire optically sectioned images using fringe projection. This system provides reliable signals from fluorescence resonance energy transfer (FRET) between cyan and yellow mutants of green fluorescent protein. We have used this system to demonstrate that, upon stimulation with growth factors, the two indicators are activated in spatially and temporally unique patterns.  相似文献   
89.
We studied the spatiotemporal regulation of Akt (also called protein kinase B), phosphatidylinositol-3,4-bisphosphate [PtdIns(3,4)P2], and phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P3] by using probes based on the principle of fluorescence resonance energy transfer. On epidermal growth factor (EGF) stimulation, the amount of PtdIns(3,4,5)P3 was increased diffusely in the plasma membrane, whereas that of PtdIns(3,4)P2 was increased more in the nascent lamellipodia than in the plasma membrane of the central region. The distribution and time course of Akt activation were similar to that of increased PtdIns(3,4)P2 levels, which were most prominent in the nascent lamellipodia. Moreover, we found that upon EGF stimulation 3-phosphoinositide-dependent protein kinase-1 (PDK1) was also recruited to nascent lamellipodia in an Akt-dependent manner. Because PDK1 is known to activate Ral GTPase and because Ral is required for EGF-induced lamellipodial protrusion, we speculated that the PDK1-Akt complex may be indispensable for the induction of lamellipodia. In agreement with this idea, EGF-induced lamellipodia formation was promoted by the overexpression of Akt and inhibited by an Akt inhibitor or a Ral-binding domain of Sec5. These results identified the Akt-PDK1 complex as an upstream positive regulator of Ral GTPase in the induction of lamellipodial protrusion.  相似文献   
90.
Summary Continuous production of monoclonal antibody was achieved in serum-free medium by hybridoma cells immobilized by calcium alginate. The cells were cultivated in an expanded bed fermentor under mild flow conditions which reduced destruction of the immobilized gel particles. Monoclonal antibody was produced continuously for more than 40 days.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号