首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   597篇
  免费   50篇
  647篇
  2022年   4篇
  2019年   4篇
  2018年   5篇
  2017年   5篇
  2016年   5篇
  2015年   9篇
  2014年   7篇
  2013年   67篇
  2012年   15篇
  2011年   22篇
  2010年   18篇
  2009年   13篇
  2008年   21篇
  2007年   18篇
  2006年   25篇
  2005年   24篇
  2004年   12篇
  2003年   21篇
  2002年   30篇
  2001年   28篇
  2000年   22篇
  1999年   18篇
  1998年   11篇
  1997年   7篇
  1996年   7篇
  1995年   6篇
  1994年   7篇
  1993年   5篇
  1992年   25篇
  1991年   18篇
  1990年   17篇
  1989年   14篇
  1988年   15篇
  1987年   13篇
  1986年   10篇
  1985年   12篇
  1984年   11篇
  1983年   3篇
  1982年   8篇
  1981年   4篇
  1979年   4篇
  1978年   5篇
  1977年   12篇
  1976年   7篇
  1975年   10篇
  1974年   7篇
  1973年   4篇
  1971年   2篇
  1970年   2篇
  1968年   2篇
排序方式: 共有647条查询结果,搜索用时 15 毫秒
91.
Linolenic acid-[1-14C] was converted to 12-oxo-trans-10-dodecenoic acid, via 12-oxo-cis-9-dodecenoic acid by incubation with chloroplasts of Thea sinensis leaves. Thus, it was confirmed that linolenic acid is split into a C12-oxo-acid, 12-oxo-trans-10-dodecenoic acid, and a C6-aldehyde, trans-2-hexenal, leaf aldehyde, by an enzyme system in chloroplasts of tea leaves.  相似文献   
92.
cis-5-Hydroxy-L-pipecolic acid was isolated and characterized from the leaves of Morus alba and the seeds of Lathyrus japonicus. The trans-form was also obtained from the former.  相似文献   
93.
Yu K  Li R  Hatanaka T  Hildebrand D 《Phytochemistry》2008,69(5):1119-1127
Vernonia galamensis accumulates vernolic acid (cis-12-epoxyoctadeca-cis-9-enoic acid) as the major fatty acid in its seed oil. Such epoxy fatty acids are useful in a number of industrial applications. Successful genetic engineering of commercial oilseed crops to produce high levels of vernolic acid depends on a better understanding of the source plant enzymes for vernolic acid accumulation. Developing V. galamensis seed microsome assays demonstrate that diacylglycerol acyltransferase (DGAT), an enzyme for the final step of triacylglycerol synthesis, has a strong substrate preference for vernolic acid bearing substrates including acyl-CoA and diacylglycerol. There are two classes of DGATs known as DGAT1 and DGAT2. Here we report on the isolation, characterization, and functional analysis of two DGAT1 cDNAs from V. galamensis (VgDGAT1a and VgDGAT1b). VgDGAT1a and VgDGAT1b are expressed in all plant tissues examined with highest expression in developing seeds. Enzymatic assays using isolated microsomes from transformed yeast show that VgDGAT1a and VgDGAT1b have the same DGAT activity levels and substrate specificities. Oleoyl-CoA and sn-1,2-dioleoylglycerol are preferred substrates over vernoloyl-CoA and sn-1,2-divernoloylglycerol. This data indicates that the two VgDGAT1s are functional, but not likely to be responsible for the selective accumulation of vernolic acid in V. galamensis seed oil.  相似文献   
94.
The synthesis of diverse DL-configuration dipeptides in a one-pot reaction was demonstrated by using a function of the aminolysis reaction of a D-stereospecific amidohydrolase from Streptomyces sp., a clan SE, S12 family peptidase categorized as a peptidase with D-stereospecificity. The enzyme was able to use various aminoacyl derivatives, including L-aminoacyl derivatives, as acyl donors and acceptors. Investigations of the specificity of the peptide synthetic activity revealed that the enzyme preferentially used D-aminoacyl derivatives as acyl donors. In contrast, L-amino acids and their derivatives were preferentially used as acyl acceptors. Consequently, the synthesized dipeptides had a DL-configuration when D- and L-aminoacyl derivatives were mixed in a one-pot reaction. This report also describes that the enzyme produced cyclo(D-Pro-L-Arg), a specific inhibitor of family 18 chitinase, with a conversion rate for D-Pro benzyl ester and L-Arg methyl ester to cyclo(D-Pro-L-Arg) of greater than 65%. Furthermore, based on results of cyclo(D-Pro-L-Arg) synthesis, we propose a reaction mechanism for cyclo(D-Pro-L-Arg) production.  相似文献   
95.
Brain-derived neurotrophic factor (BDNF) is known to have important functions in neuronal survival, differentiation, and plasticity. In addition to its role as a survival-promoting factor, BDNF reportedly can enhance neuronal cell death in some cases, for example, the death caused by excitotoxicity or glucose deprivation. The cellular mechanism of the death-enhancing effect of BDNF remains unknown, in contrast to that of its survival-promoting effect. In this work, we found that BDNF markedly accelerated the nitric oxide (NO) donor-induced death of cultured embryonic cortical neurons. BDNF increased the number of cells with nuclear condensation and DNA fragmentation 24 h after treatment with the NO donor, but it did not change the number of those cells 36 h after the treatment. The BDNF-accelerated death of cortical neurons was inhibited by the addition of actinomycin D or cycloheximide. These results suggest that BDNF can accelerate apoptotic cell death elicited by NO donor. TrkB-IgG and K252a blocked the BDNF-induced acceleration of the death, indicating that the death-accelerating effect by BDNF is mediated by TrkB. In addition, the BDNF-accelerated apoptosis was inhibited by the addition of SB202190 and SB203580, specific inhibitors of p38 mitogen-activated protein kinase (MAPK), and U0126, a specific inhibitor of MAPK/ERK kinase 1, indicating that the activation of both p38 MAPK and ERK is involved in the signaling cascade of the BDNF-accelerated, NO donor-induced apoptosis.  相似文献   
96.
Little is known about how synaptic activity is modulated in the central nervous system. We have identified SCRAPPER, a synapse-localized E3 ubiquitin ligase, which regulates neural transmission. SCRAPPER directly binds and ubiquitinates RIM1, a modulator of presynaptic plasticity. In neurons from Scrapper-knockout (SCR-KO) mice, RIM1 had a longer half-life with significant reduction in ubiquitination, indicating that SCRAPPER is the predominant ubiquitin ligase that mediates RIM1 degradation. As anticipated in a RIM1 degradation defect mutant, SCR-KO mice displayed altered electrophysiological synaptic activity, i.e., increased frequency of miniature excitatory postsynaptic currents. This phenotype of SCR-KO mice was phenocopied by RIM1 overexpression and could be rescued by re-expression of SCRAPPER or knockdown of RIM1. The acute effects of proteasome inhibitors, such as upregulation of RIM1 and the release probability, were blocked by the impairment of SCRAPPER. Thus, SCRAPPER has an essential function in regulating proteasome-mediated degradation of RIM1 required for synaptic tuning.  相似文献   
97.
We isolated the small subunit of ribulose-1, 5-bisphosphate carboxylase/oxygenase (RuBisCO SSu) from a fern,Asplenium cataractarum and determined its 34 N-terminal amino acid sequence. We obtained a cDNA clone that contains the entire coding region of the SSu from the same fern species, using synthetic oligonucleotide probes derived from the above amino acid sequence. It contains a 525 bp open reading frame capable of coding for a polypeptide with 174 amino acids, 31 bp 5′-and 206 bp 3′-noncoding regions. It was also elucidated that the precursor to the SSu contains a transit peptide of 53 amino acid residues and a mature protein of 121 residues. We compared the deduced amino acid sequence of the fern SSu with those of 11 other vascular plant species (including gymnosperms, monocots and dicots). As low as 55% homology was observed between those of a fern and seed plants. Constancy of the amino acid substitution rate in RuBisCO SSu was supported by our relative rate test. Amino acid substitution rate per year per site for RuBisCO SSu was calculated to be 0.81×10−9 assuming that the separation between pteridophytes and seed plants arose 380 million years ago.  相似文献   
98.
The beta-lactam antibiotics act through their inhibition of D-alanyl-D-alanine transpeptidases (DD-peptidases) that catalyze the last step of bacterial cell wall synthesis. Bacteria resist beta-lactams by a number of mechanisms, one of the more important of which is the production of beta-lactamases, enzymes that catalyze the hydrolysis of these antibiotics. The serine beta-lactamases are evolutionary descendants of DD-peptidases and retain much of their structure, particularly at the active site. Functionally, beta-lactamases differ from DD-peptidases in being able to catalyze hydrolysis of acyl-enzyme intermediates derived from beta-lactams and being unable to efficiently catalyze acyl transfer reactions of D-alanyl-D-alanine terminating peptides. The class C beta-lactamase of Enterobacter cloacae P99 is closely similar in structure to the DD-peptidase of Streptomyces R61. Previous studies have demonstrated that the evolution of the beta-lactamase, presumably from an ancestral DD-peptidase similar to the R61 enzyme, included structural changes leading to rejection of the D-methyl substituent of the penultimate D-alanine residue of the DD-peptidase substrate. This seems to have been achieved by suitable placement of the side chain of Tyr 221 in the beta-lactamase. We show in this paper that mutation of this residue to Gly 221 produces an enzyme that more readily hydrolyzes and aminolyzes acyclic D-alanyl substrates than glycyl analogues, in contrast to the wild-type beta-lactamase; the mutant is therefore a more efficient DD-peptidase. Molecular modeling showed that the D-alanyl methyl group fits snugly into the space originally occupied by the Tyr 221 side chain and, in doing so, allows the bound substrate to assume a conformation similar to that on the R61 DD-peptidase, which has a hydrophobic pocket for this substituent. Another mutant of the P99 beta-lactamase, the extended spectrum GC1 enzyme, also has space available for a D-alanyl methyl group because of an extended omega loop. In this case, however, no enhancement of activity against D-alanyl substrates with respect to glycyl was observed. Accommodation of the penultimate D-alanyl methyl group is therefore necessary for efficient DD-peptidase activity, but not sufficient.  相似文献   
99.
3,4-Dihydroxy-2-hydroxymethylpyrrolidine, which has not been encountered naturally before, was isolated from the Pteridophyte Arachniodes standishii. Its configuration was determined as 2,3-cis and 3,4-trans from NMR spectra.  相似文献   
100.
A species of Erwinia was found to produce no other pectolytic enzyme than the two transeliminases of exo-types, namely, an oligogalacturonide transeliminase and an exopectic acid transeliminase. Of the two enzymes, the exopectic acid transeliminase was isolated and its properties were investigated. The results are as follows: (1) Pectic acids having an unsaturated galacturonic acid residue at the non-reducing end of the molecule are susceptible but oxidized or reduced pectic acids resistant to the enzyme action. (2) The enzyme has no activity toward pectinic acid and polymethylpolygalacturonate methyl glycoside. The limit of the enzymatic degradation for citrus pectic acid is 43.8%. (3) The rate of the enzyme activity was maximal with tetragalacturonic acid and followed by acid-soluble pectic acid, acid-insoluble pectic acid, pectic acid and trigalacturonic acid. Unlike the oligogalacturonide transeliminases of Pseudomonas sp. (strain S2) and Erwinia aroideae, the present enzyme shows a considerably high activity toward pectic acids of high molecular weight. (4) The pH-activity curves vary with the buffer employed. (5) The enzyme is activated by Co2+ and Mn2+ but powerfully inhibited by Cu2+ and Hg2+. Ca2+ has no significant effect on the enzyme activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号