首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   0篇
  2022年   1篇
  2019年   1篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2013年   4篇
  2012年   3篇
  2011年   3篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   4篇
  1999年   1篇
  1998年   1篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
  1983年   1篇
  1981年   2篇
  1958年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
11.
The blood–brain-barrier (BBB) is formed by different cell types, of which brain microvascular endothelial cells are major structural constituents. The goal of this study was to examine the effects of cooling on the permeability of the BBB with reference to tight junction formation of brain microendothelial cells. The sensorimotor cortex above the dura mater in adult male Wistar rats was focally cooled to a temperature of 5 °C for 1 h, then immunostaining for immunoglobulin G (IgG) was performed to evaluate the permeability of the BBB. Permeability produced by cooling was also evaluated in cultured murine brain endothelial cells (bEnd3) based on measurement of trans-epithelial electric resistance (TEER). Immunocytochemistry and Western blotting of proteins associated with tight junctions in bEnd3 were performed to determine protein distribution before and after cooling. After focal cooling of the rat brain cortex, diffuse immunostaining for IgG was observed primarily around the small vasculature and in the extracellular spaces of parenchyma of the cortex. In cultured bEnd3, TEER significantly decreased during cooling (15 °C) and recovered to normal levels after rewarming to 37 °C. Immunocytochemistry and Western blotting showed that claudin-5, a critical regulatory protein for tight junctions, was translocated from the membrane to the cytoplasm after cooling in cultured bEnd3 cells. These results suggest that focal brain cooling may open the BBB transiently through an effect on tight junctions of brain microendothelial cells, and that therapeutically this approach may allow control of BBB function and drug delivery through the BBB.  相似文献   
12.
Hypothermia has been proposed as a treatment for reducing neuronal damage in the brain induced by hypoxic ischemia. In the developing brain, hypoxic ischemia-induced injury may give rise to cerebral palsy (CP). However, it is unknown whether hypothermia might affect the development of CP. The purpose of this study was to investigate whether hypothermia would have a protective effect on the brains of immature, 3-day old (P3) mice after a challenge of cerebral ischemia. Cerebral ischemia was induced in P3 mice with a right common carotid artery ligation followed by hypoxia (6% O2, 37°C) for 30 min. Immediately after hypoxic ischemia, mice were exposed to hypothermia (32°C) or normothermia (37°C) for 24 h. At 4 weeks of age, mouse motor development was tested in a behavioral test. Mice were sacrificed at P4, P7, and 5 weeks to examine brain morphology. The laminar structure of the cortex was examined with immunohistochemistry (Cux1/Ctip2); the number of neurons was counted; and the expression of myelin basic protein (MBP) was determined. The hypothermia treatment was associated with improved neurological outcomes in the behavioral test. In the normothermia group, histological analyses indicated reduced numbers of neurons, reduced cortical laminar thickness in the deep, ischemic cortical layers, and significant reduction in MBP expression in the ischemic cortex compared to the contralateral cortex. In the hypothermia group, no reductions were noted in deep cortical layer thickness and in MBP expression in the ischemic cortex compared to the contralateral cortex. At 24 h after the hypothermia treatment prevented the neuronal cell death that had predominantly occurred in the ischemic cortical deep layers with normothermia treatment. Our findings may provide a preclinical basis for testing hypothermal therapies in patients with CP induced by hypoxic ischemia in the preterm period.  相似文献   
13.
Gene-targeting technology using mouse embryonic stem (ES) cells has become the “gold standard” for analyzing gene functions and producing disease models. Recently, genetically modified mice with multiple mutations have increasingly been produced to study the interaction between proteins and polygenic diseases. However, introduction of an additional mutation into mice already harboring several mutations by conventional natural crossbreeding is an extremely time- and labor-intensive process. Moreover, to do so in mice with a complex genetic background, several years may be required if the genetic background is to be retained. Establishing ES cells from multiple-mutant mice, or disease-model mice with a complex genetic background, would offer a possible solution. Here, we report the establishment and characterization of novel ES cell lines from a mouse model of Alzheimer’s disease (3xTg-AD mouse, Oddo et al. in Neuron 39:409–421, 2003) harboring 3 mutated genes (APPswe, TauP301L, and PS1M146V) and a complex genetic background. Thirty blastocysts were cultured and 15 stable ES cell lines (male: 11; female: 4) obtained. By injecting these ES cells into diploid or tetraploid blastocysts, we generated germline-competent chimeras. Subsequently, we confirmed that F1 mice derived from these animals showed similar biochemical and behavioral characteristics to the original 3xTg-AD mice. Furthermore, we introduced a gene-targeting vector into the ES cells and successfully obtained gene-targeted ES cells, which were then used to generate knockout mice for the targeted gene. These results suggest that the present methodology is effective for introducing an additional mutation into mice already harboring multiple mutated genes and/or a complex genetic background.  相似文献   
14.
15.
16.
Identification of cellular mRNA targets for RNA-binding protein Sam68   总被引:5,自引:0,他引:5  
  相似文献   
17.
We have previously found toxic effects of iron chelate, Fe-NTA on cultured normal rat liver epithelial cells (RL34). In the present study, when RL34 cells were exposed to 50 g/ml iron of Fe-NTA for 15 days, besides the expected cytolytic effects in most cells, the appearance of resistant cells was observed. The resistant cells showed drastic morphological transformation, grew in soft agar, and induced hepatocellular carcinomas when transplanted into syngeneic newborn rats in a short period of time. Since DNA instability in the transformed cells was ascertained by differential AO staining, it is suggested that DNA damage by Fe-NTA is of a critical importance for extremely rapid neoplastic transformation of normal epithelial cells.Abbreviations AO acridine orange - DME medium Dulbecco's modified Eagle's medium - FCS fetal calf serum - Fe-HEDTA ferric-N-(2-hydroxyethyl)ethylenediaminetriacetic acid - Fe-NTA ferric-nitrilotriacetate - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - PBS Dulbecco's phosphate-buffered saline  相似文献   
18.
The vitamin D receptor (VDR) mediates the physiological and pharmacological actions of 1α,25-dihydroxyvitamin D3 in bone and calcium metabolism, cellular growth and differentiation, and immunity. VDR also responds to secondary bile acids and belongs to the NR1I subfamily of the nuclear receptor superfamily, which regulates expression of xenobiotic metabolism genes. When compared to knockout mouse investigations of the other NR1I nuclear receptors, pregnane X receptor and constitutive androstane receptor, an understanding of the role of VDR in xenobiotic metabolism remains limited. We examined the effect of VDR deletion in a mouse model of cholestasis. We performed bile duct ligation (BDL) on VDR-null mice and compared blood biochemistry, mRNA expression of genes involved in bile acid and bilirubin metabolism, cytokine production, and expression of inflammatory regulators with those of wild-type mice. VDR-null mice had elevated plasma conjugated bilirubin levels three days after BDL compared with wild-type mice. Urine bilirubin levels and renal mRNA and/or protein expression of multidrug resistance-associated proteins 2 and 4 were decreased in VDR-null mice, suggesting impaired excretion of conjugated bilirubin into urine. While VDR-null kidney showed mRNA expression of interleukin-6 (IL-6) after BDL and VDR-null macrophages had higher IL-6 protein levels after lipopolysaccharide stimulation, the induction of intestinal Il6 mRNA expression and plasma IL-6 protein levels after BDL was impaired in VDR-null mice. Immunoblotting analysis showed that expression of an immune regulator, IκBα, was elevated in the jejunum of VDR-null mice, a possible mechanism for the attenuated induction of Il6 expression in the intestine after BDL. Increased expression of IκBα may be a consequence of compensatory mechanisms for VDR deletion. These results reveal a role of VDR in bilirubin clearance during cholestasis. VDR is also suggested to contribute to tissue-selective immune regulation.  相似文献   
19.
To establish low density lipoprotein receptor (LDLR) mutant rats as a hypercholesterolemia and atherosclerosis model, we screened the rat LDLR gene for mutations using an N-ethyl-N-nitrosourea mutagenesis archive of rat gene data, and identified five mutations in its introns and one missense mutation (478T>A) in exon 4. The C160S mutation was located in the ligand binding domain of LDLR and was revealed to be equivalent to mutations (C160Y/G) identified in human familial hypercholesterolemia (FH) patients. The wild type, heterozygous, and homozygous mutant rats were fed a normal chow diet or a high fat high cholesterol (HFHC) diet from the age of 10 weeks for 16 weeks. The LDLR homozygous mutants fed the normal chow diet showed higher levels of plasma total cholesterol and LDL cholesterol than the wild type rats. When fed the HFHC diet, the homozygous mutant rats exhibited severe hyperlipidemia and significant lipid deposition from the aortic arch to the abdominal aorta as well as in the aortic valves. Furthermore, the female homozygous mutants also developed xanthomatosis in their paws. In conclusion, we suggest that LDLR mutant rats are a useful novel animal model of hypercholesterolemia and atherosclerosis.  相似文献   
20.
N-acyl-phosphatidylethanolamine is a precursor phospholipid for anandamide, oleoylethanolamide, and other N-acylethanolamines, and it may in itself have biological functions in cell membranes. Recently, N-palmitoyl-phosphatidylethanolamine (NAPE) has been reported to function as an anorectic hormone secreted from the gut and acting on the brain (Gillum et al., [5]). In the current study, two of our laboratories independently investigated whether NAPE metabolites may be involved in mediating the anorectic action of NAPE i.p. injected in mice. Thus, the anorectic activity of a non-hydrolysable NAPE analogue, having ether bonds instead of ester bonds at sn1 and sn2 was compared with that of NAPE in molar equivalent doses. Furthermore, the anorectic effect of NAPE in NAPE-hydrolysing phospholipase D knockout animals was investigated. As negative controls, the NAPE precursor phosphatidylethanolamine and the related phospholipids phosphatidylcholine and phosphatidic acid were also tested. All compounds except one were found to inhibit food intake, raising the possibility that the effect of NAPE is non-specific.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号