首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   5篇
  2020年   1篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   2篇
  2013年   2篇
  2012年   8篇
  2011年   5篇
  2010年   3篇
  2009年   1篇
  2008年   11篇
  2007年   5篇
  2006年   10篇
  2005年   9篇
  2004年   2篇
  2003年   3篇
  2002年   7篇
  2001年   1篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1988年   1篇
  1986年   2篇
  1981年   1篇
  1980年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有105条查询结果,搜索用时 15 毫秒
61.
The effects of transmembrane electric potential difference and ionic strength on the permeation of tryptamine and indoleacetic acid across a Caco-2 cell monolayer were examined. A decrease in the transmembrane electric potential difference caused by the addition of potassium ion to the transport buffer had no effect on the permeation rate of either compound. On the other hand, an increase in ionic strength resulted in a decrease in the permeation rate of tryptamine and an increase in the permeation rate of indoleacetic acid. The changes in the permeation rate with changes in the ionic strength were correlated with the membrane surface potential monitored by 1-anilino-8-naphthalenesulfonic acid (ANS), a fluorescent probe. We tested these effects using several other cationic and anionic compounds. These effects of ionic strength were found to be common to all drugs tested. The compound that showed a relatively lower permeation rate was given relatively stronger effect. The possibility of overestimation or underestimation caused by these effects should be considered when the permeation of an ionic compound is evaluated using a cell monolayer system.  相似文献   
62.
Two Pseudomonas aeruginosa genes, termed phaJ1(Pa) and phaJ2(Pa), homologous to the Aeromonas caviae (R)-specific enoyl-CoA hydratase gene (phaJ(Ac)) were cloned using a PCR technique to investigate the monomer-supplying ability for polyhydroxyalkanoate (PHA) synthesis from beta-oxidation cycle. Two expression plasmids for phaJ1(Pa) and phaJ2(Pa) were constructed and introduced into Escherichia coli DH5alpha strain. The recombinants harboring phaJ1(Pa) or phaJ2(Pa) showed high (R)-specific enoyl-CoA hydratase activity with different substrate specificities, that is, specific for short chain-length enoyl-CoA or medium chain-length enoyl-CoA, respectively. In addition, co-expression of these two hydratase genes with PHA synthase gene in E. coli LS5218 resulted in the accumulation of PHA up to 14-29 wt% of cell dry weight from dodecanoate as a sole carbon source. It has been suggested that phaJ1(Pa) and phaJ2(Pa) products have the monomer-supplying ability for PHA synthesis from beta-oxidation cycle.  相似文献   
63.
64.
Non-specific immunopotentiators, such as polysaccharide K (PSK), also known as OK-432, induce anti-tumor effects via immunological responses. The efficacy of combination immunochemotherapy using these immunopotentiators has been examined by multiple previous studies. The survival benefits of immunochemotherapy for patients with curative resections of gastric cancers are not widely accepted. To clarify this issue, we performed a meta-analysis to evaluate the effect of immunochemotherapy on survival in patients with curative resections of gastric cancer. For this study, we compared the results of chemotherapy and immunotherapy using the biological response modifier PSK as an immunopotentiator. The meta-analysis included 8,009 patients from eight randomized controlled trials after central randomization. The overall hazard ratio for eligible patients was 0.88 (95% confidence interval, 0.79–0.98; P = 0.018) with no significant heterogeneity [χ 2(8) for heterogeneity = 11.7; P = 0.16]. The results of this meta-analysis suggest that adjuvant immunochemotherapy with PSK improves the survival of patients after curative gastric cancer resection.  相似文献   
65.
66.
Summary The case of a 13-year-old girl with tricho-rhino-phalangeal syndrome is presented. It is characterized by sparse and slow growing hair, pear-shaped nose and coneshaped epiphyses of hands and feet. The inheritance pattern is probably autosomal dominant transmission.  相似文献   
67.
A large number of humans are stung by jellyfish all over the world. The stings cause acute pain followed by persistent pain and local inflammation. Harmful jellyfish species typically cause strong pain, whereas harmless jellyfish cause subtle or no pain. Jellyfish sting humans by injecting a tubule, contained in the nematocyst, the stinging organ of jellyfish. The tubule penetrates into the skin leading to venom injection. The detailed morphology of the nematocyst tubule and molecular structure of the venom in the nematocyst has been reported; however, the mechanism responsible for the difference in pain that is caused by harmful and harmless jellyfish sting has not yet been explored or explained. Therefore, we hypothesized that differences in the length of the nematocyst tubule leads to different degrees of epithelial damage. The initial acute pain might be generated by penetration of the tubule, which stimulates pain receptor neurons, whilst persistent pain might be caused by injection of venom into the epithelium. To test this hypothesis we compared the lengths of discharged nematocyst tubules from harmful and harmless jellyfish species and evaluated their ability to penetrate human skin. The results showed that the harmful jellyfish species, Chrysaora pacifica, Carybdea brevipedalia, and Chironex yamaguchii, causing moderate to severe pain, have nematocyst tubules longer than 200 μm, compared with a jellyfish species that cause little or no pain, Aurelia aurita. The majority of the tubules of harmful jellyfishes, C. yamaguchii and C. brevipedalia, were sufficiently long to penetrate the human epidermis and physically stimulate the free nerve endings of Aδ pain receptor fibers around plexuses to cause acute pain and inject the venom into the human skin epithelium to cause persistent pain and inflammation.  相似文献   
68.
69.
The nuclear membranes surrounding fish and frog oocyte germinal vesicles (GVs) are supported by the lamina, an internal, mesh-like structure that consists of the protein lamin B3. The mechanisms by which lamin B3 is transported into GVs and is assembled to form the nuclear lamina are not well understood. In this study, we developed a heterogeneous microinjection system in which wild-type or mutated goldfish GV lamin B3 (GFLB3) was expressed in Escherichia coli, biotinylated, and microinjected into Xenopus oocytes. The localization of the biotinylated GFLB3 was visualized by fluorescence confocal microscopy. The results of these experiments indicated that the N-terminal domain plays important roles in both nuclear transport and assembly of lamin B3 to form the nuclear lamina. The N-terminal domain includes a major consensus phosphoacceptor site for the p34(cdc2) kinase at amino acid residue Ser-28. To investigate nuclear lamin phosphorylation, we generated a monoclonal antibody (C7B8D) against Ser-28-phosphorylated GFLB3. Two-dimensional (2-D) electrophoresis of GV protein revealed two major spots of lamin B3 with different isoelectric points (5.9 and 6.1). The C7B8D antibody recognized the pI-5.9 spot but not the pI-6.1 spot. The former spot disappeared when the native lamina was incubated with lambda phage protein phosphatase (lambda-PP), indicating that a portion of the lamin protein was already phosphorylated in the goldfish GV-stage oocytes. GFLB3 that had been microinjected into Xenopus oocytes was also phosphorylated in Xenopus GV lamina, as judged by Western blotting with C7B8D. Thus, lamin phosphorylation appears to occur prior to oocyte maturation in vivo in both these species. Taken together, our results suggest that the balance between phosphorylation by interphase lamin kinases and dephosphorylation by phosphatases regulates the conformational changes in the lamin B3 N-terminal head domain that in turn regulates the continual in vivo rearrangement and remodeling of the oocyte lamina.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号