首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1470篇
  免费   75篇
  2022年   6篇
  2020年   9篇
  2019年   9篇
  2018年   15篇
  2017年   15篇
  2016年   22篇
  2015年   33篇
  2014年   41篇
  2013年   101篇
  2012年   68篇
  2011年   75篇
  2010年   32篇
  2009年   54篇
  2008年   77篇
  2007年   52篇
  2006年   93篇
  2005年   80篇
  2004年   70篇
  2003年   87篇
  2002年   89篇
  2001年   15篇
  2000年   21篇
  1999年   22篇
  1998年   36篇
  1997年   28篇
  1996年   21篇
  1995年   24篇
  1994年   24篇
  1993年   19篇
  1992年   12篇
  1991年   11篇
  1990年   10篇
  1989年   12篇
  1988年   13篇
  1987年   6篇
  1986年   13篇
  1985年   8篇
  1984年   17篇
  1983年   13篇
  1982年   23篇
  1981年   25篇
  1980年   15篇
  1979年   20篇
  1978年   11篇
  1977年   8篇
  1976年   17篇
  1975年   7篇
  1974年   14篇
  1973年   12篇
  1972年   7篇
排序方式: 共有1545条查询结果,搜索用时 15 毫秒
141.
142.
Shigemori Y  Oishi M 《BioTechniques》2007,42(5):622-626
We report a simple method to directly label or modify a specific terminus of linear DNA molecules. The method is based upon our finding that a presumably triple-stranded structure by RecA-mediated formation at the terminus formed with deoxyoligonucleotides, whose sequence is complementary to the 5' terminus of one of the strands of a double-stranded DNA molecule, is quite stable and can serve as a template for DNA polymerase reaction, with the nucleotides being incorporated by an exchange reaction. This novel type of nucleotide incorporation has made it possible to label a specific terminus of target double-stranded DNA molecules by a direct means (without amplification) regardless of its molecular size, a procedure previously unavailable. As an application, we show that large DNA molecules can be fixed to a solid support in a specific orientation, thus being utilized for various analytical purposes of DNA molecules.  相似文献   
143.
144.
145.
In this study, we report on an in situ monitoring system of living cultured cells using infrared absorption spectroscopy in the geometry of multiple internal reflections (MIR-IRAS). In order to observe living cultured cells, the temperature in the sample chamber of a FT-IR spectrometer was maintained at 37 °C and a humidified gas mixture containing 5% CO2 was introduced into the sample chamber. Human breast cell line MCF-7 cultured on Si MIR prisms were placed in the sample chamber and infrared spectra of MCF-7 cells were collected for 5 h. It was found that the adhesion and metabolism of MCF-7 cells could be monitored by the absorption intensity of amide-II protein band (1,545 cm−1) and also by the absorption intensities of CH x bands (2,700–3,100 cm−1). These results suggest that our system is useful for a nondestructive and non-label monitoring of cell viability. Our method based on infrared absorption spectroscopy has a potential for bioscreening application.  相似文献   
146.
The bacterial flagellar motor is an elaborate molecular machine that converts ion-motive force into mechanical force (rotation). One of its remarkable features is its swift switching of the rotational direction or speed upon binding of the response regulator phospho-CheY, which causes the changes in swimming that achieve chemotaxis. Vibrio alginolyticus has dual flagellar systems: the Na(+)-driven polar flagellum (Pof) and the H(+)-driven lateral flagella (Laf), which are used for swimming in liquid and swarming over surfaces respectively. Here we show that both swimming and surface-swarming of V. alginolyticus involve chemotaxis and are regulated by a single CheY species. Some of the substitutions of CheY residues conserved in various bacteria have different effects on the Pof and Laf motors, implying that CheY interacts with the two motors differently. Furthermore, analyses of tethered cells revealed that their switching modes are different: the Laf motor rotates exclusively counterclockwise and is slowed down by CheY, whereas the Pof motor turns both counterclockwise and clockwise, and CheY controls its rotational direction.  相似文献   
147.
Prochloron is an oxygenic photosynthetic bacterium that lives in obligate symbiosis with didemnid ascidians, such as Diplosoma spp., Lissoclinum spp. and Trididemnum spp. This study investigated the genetic diversity of the genus Prochloron by constructing a phylogenetic tree based on the 16S rRNA gene sequences of 27 isolates from 11 species of didemnid ascidians collected from Japan, Australia and the USA. The 27 isolates formed three phylogenetic groups: 22 of the samples were identified to be closely related members of Prochloron. Two samples, isolated from Trididemnum nubilum and Trididemnum clinides, were found to belong to the species Synechocystis trididemni, the closest relative of Prochloron. Three isolates formed a separate group from both Prochloron sp. and S. trididemni, potentially indicating a new symbiotic phylotype. Genomic polymorphism analysis, employing cyanobacterium-specific highly iterative palindrome 1 repeats, could not delineate the isolates further. For the Prochloron sp. isolates, the phylogenetic outcome was independent of host species and geographic origin of the sample indicating a low level of host specificity, low genetic variation within the taxon and possibly a lack of a host-symbiont relationship during reproductive dispersal. This study contributes significantly to the understanding of Prochloron diversity and phylogeny, and implications for the evolutionary relationship of prochlorophytes, cyanobacteria and chloroplasts are also discussed.  相似文献   
148.

Background

The collective cell migration of stratified epithelial cells is considered to be an important phenomenon in wound healing, development, and cancer invasion; however, little is known about the mechanisms involved. Furthermore, whereas Rho family proteins, including RhoA, play important roles in cell migration, the exact role of Rho-associated coiled coil-containing protein kinases (ROCKs) in cell migration is controversial and might be cell-type dependent. Here, we report the development of a novel modified scratch assay that was used to observe the collective cell migration of stratified TE-10 cells derived from a human esophageal cancer specimen.

Results

Desmosomes were found between the TE-10 cells and microvilli of the surface of the cell sheet. The leading edge of cells in the cell sheet formed a simple layer and moved forward regularly; these rows were followed by the stratified epithelium. ROCK inhibitors and ROCK small interfering RNAs (siRNAs) disturbed not only the collective migration of the leading edge of this cell sheet, but also the stratified layer in the rear. In contrast, RhoA siRNA treatment resulted in more rapid migration of the leading rows and disturbed movement of the stratified portion.

Conclusions

The data presented in this study suggest that ROCKs play an important role in mediating the collective migration of TE-10 cell sheets. In addition, differences between the effects of siRNAs targeting either RhoA or ROCKs suggested that distinct mechanisms regulate the collective cell migration in the simple epithelium of the wound edge versus the stratified layer of the epithelium.

Electronic supplementary material

The online version of this article (doi:10.1186/s40659-015-0039-2) contains supplementary material, which is available to authorized users.  相似文献   
149.
In this report, we applied site-specifically deuterated N-stearoylsphingomyelins (SSMs) to raft-exhibiting ternary mixtures containing SSM, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and cholesterol (Chol) and successfully acquired deuterium quadrupole coupling profiles of SSM from liquid-ordered (Lo) and liquid-disordered (Ld) domains. To our knowledge, this is the first report that shows detailed lipid chain dynamics separately and simultaneously obtained from coexisting Lo and Ld domains. We also found that the quadrupole profile of the Lo phase in the ternary system was almost identical to that in the SSM-Chol binary mixture, suggesting that the order profile of the binary system is essentially applicable to more complicated membrane systems in terms of the acyl chain order. We also demonstrated that 2H NMR spectroscopy, in combination with organic synthesis of deuterated components, could be used to reveal the accurate mole fractions of each component distributed in the Lo and Ld domains. As compared with the reported tie-line analysis of phase diagrams, the merit of our 2H NMR analysis is that the domain-specific compositional fractions are directly attainable without experimental complexity and ambiguity. The accurate compositional distributions as well as lipid order profiles in ternary mixtures are relevant to understanding the molecular mechanism of lipid raft formation.  相似文献   
150.
Sphingomyelin (SM) and cholesterol (Chol) are considered essential for the formation of lipid rafts; however, the types of molecular interactions involved in this process, such as intermolecular hydrogen bonding, are not well understood. Since, unlike other phospholipids, SM is characterized by the presence of an amide group, it is essential to determine the orientation of the amide and its order in the lipid bilayers to understand the nature of the hydrogen bonds in lipid rafts. For this study, 1′-13C-2-15N-labeled and 2′-13C-2-15N-labeled SMs were prepared, and the rotational-axis direction and order parameters of the SM amide in bilayers were determined based on 13C and 15N chemical-shift anisotropies and intramolecular 13C-15N dipole coupling constants. Results revealed that the amide orientation was minimally affected by Chol, whereas the order was enhanced significantly in its presence. Thus, Chol likely promotes the formation of an intermolecular hydrogen-bond network involving the SM amide without significantly changing its orientation, providing a higher order to the SM amide. To our knowledge, this study offers new insight into the significance of the SM amide orientation with regard to molecular recognition in lipid rafts, and therefore provides a deeper understanding of the mechanism of their formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号