首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1472篇
  免费   73篇
  2022年   6篇
  2020年   9篇
  2019年   9篇
  2018年   15篇
  2017年   15篇
  2016年   22篇
  2015年   33篇
  2014年   41篇
  2013年   101篇
  2012年   68篇
  2011年   75篇
  2010年   32篇
  2009年   54篇
  2008年   77篇
  2007年   52篇
  2006年   93篇
  2005年   80篇
  2004年   70篇
  2003年   87篇
  2002年   89篇
  2001年   15篇
  2000年   20篇
  1999年   25篇
  1998年   38篇
  1997年   28篇
  1996年   20篇
  1995年   23篇
  1994年   24篇
  1993年   18篇
  1992年   12篇
  1991年   11篇
  1990年   10篇
  1989年   12篇
  1988年   13篇
  1987年   6篇
  1986年   13篇
  1985年   8篇
  1984年   16篇
  1983年   13篇
  1982年   23篇
  1981年   25篇
  1980年   15篇
  1979年   20篇
  1978年   11篇
  1977年   8篇
  1976年   17篇
  1975年   7篇
  1974年   14篇
  1973年   12篇
  1972年   7篇
排序方式: 共有1545条查询结果,搜索用时 15 毫秒
931.
The efficient engulfment of apoptotic cells by professional or nonprofessional phagocytes is critical to maintain mammalian homeostasis. To identify molecules involved in the engulfment of apoptotic cells, we established a retrovirus-based expression cloning system coupled with the engulfment assay. By screening a cDNA library of a mouse macrophage cell line, we identified two small GTPase family members (RhoG and Rab5) that enhanced the engulfment of apoptotic cells. By examining other small GTPase family members, we found that Rac1 enhanced the engulfment of apoptotic cells, whereas RhoA inhibited the process. Accordingly, the expression of a dominant-negative form of RhoG or Rac1 in primary macrophage cultures severely reduced the ability of the macrophages to engulf apoptotic cells, and a dominant-negative form of RhoA enhanced the process. These results indicated that the efficient engulfment of apoptotic cells requires the concerted action of small GTPase family members. We demonstrated previously that NIH3T3 cells expressing the alphav beta3 integrin efficiently engulf apoptotic cells in the presence of milk fat globule epidermal growth factor 8 via a phosphatidylserine-dependent mechanism. The dominant-negative form of RhoG or Rac1 inhibited this process, which suggested RhoG and Rac1 are also involved in the integrin-mediated engulfment.  相似文献   
932.
The adaptive food-web hypothesis suggests that an adaptive foraging switch inverses the classically negative complexity-stability relationships of food webs into positive ones, providing a possible resolution for the long-standing paradox of how populations persist in a complex natural food web. However, its applicability to natural ecosystems has been questioned, because the positive relationship does not emerge when a niche model, a realistic "benchmark" of food-web models, is used. I hypothesize that, in the niche model, increasing connectance influences the fraction of basal species to destabilize the system and this masks the inversion of the negative complexity-stability relationship in the presence of adaptive foraging. A model analysis shows that, if this confounding effect is eliminated, then, even in a niche model, a population is more likely to persist in a more complex food web. This result supports the robustness of adaptive food-web hypothesis and reveals the condition in which the hypothesis should be tested.  相似文献   
933.
934.
935.
The polar flagellar motor of Vibrio alginolyticus rotates using Na(+) influx through the stator, which is composed of 2 subunits, PomA and PomB. About a dozen stators dynamically assemble around the rotor, depending on the Na(+) concentration in the surrounding environment. The motor torque is generated by the interaction between the cytoplasmic domain of PomA and the C-terminal region of FliG, a component of the rotor. We had shown previously that mutations of FliG affected the stator assembly around the rotor, which suggested that the PomA-FliG interaction is required for the assembly. In this study, we examined the effects of various mutations mainly in the cytoplasmic domain of PomA on that assembly. All mutant stators examined, which resulted in the loss of motor function, assembled at a lower level than did the wild-type PomA. A His tag pulldown assay showed that some mutations in PomA reduced the PomA-PomB interaction, but other mutations did not. Next, we examined the ion conductivity of the mutants using a mutant stator that lacks the plug domain, PomA/PomB(ΔL)(Δ41-120), which impairs cell growth by overproduction, presumably because a large amount of Na(+) is conducted into the cells. Some PomA mutations suppressed this growth inhibition, suggesting that such mutations reduce Na(+) conductivity, so that the stators could not assemble around the rotor. Only the mutation H136Y did not impair the stator formation and ion conductivity through the stator. We speculate that this particular mutation may affect the PomA-FliG interaction and prevent activation of the stator assembly around the rotor.  相似文献   
936.
The crystal structures of the Na(+)- and Li(+)-bound NtpK rings of Enterococcus hirae V-ATPase have been obtained. The coupling ion (Na(+) or Li(+)) was surrounded by five oxygen atoms contributed by residues T64, Q65, Q110, E139, and L61, and the hydrogen bonds of the side chains of Q110, Y68, and T64 stabilized the position of the E139 γ carboxylate essential for ion occlusion (PDB accession numbers 2BL2 and 2CYD). We previously indicated that an NtpK mutant strain (E139D) lost tolerance to sodium but not to lithium at alkaline pHs and suggested that the E139 residue is indispensable for the enzymatic activity of E. hirae V-ATPase linked with the sodium tolerance of this bacterium. In this study, we examined the activities of V-ATPase in which these four residues, except for E139, were substituted. The V-ATPase activities of the Q65A and Y68A mutants were slightly retained, but those of the T64A and Q110A mutants were negligible. Among the residues, T64 and Q110 are indispensable for the ion coupling of E. hirae V-ATPase, in addition to the essential residue E139.  相似文献   
937.
An in vitro regeneration and transient expression systems were developed for the halophyte sea aster (Aster tripolium L.), an important genetic resource for salt tolerance. Adventitious shoots were formed from both leaf explants and suspension-cultured cells in a Murashige and Skoog (MS) (Physiol Plant 15:473–497, 1962) basal salts containing 500 mg l−1 casamino acids, and supplemented with 5.4 μM a-naphthaleneacetic acid (NAA) and 4.7 μM kinetin to the culture medium. Hyperhydricity of shoots was avoided by increasing the ventilation of the culture vessel. Root formation from shoots was promoted in the presence of 26.9 μM NAA. A high yield of protoplasts was isolated using 1% cellulase and 0.25% pectinase from both leaf mesophyll and suspension-cultured cells, and these were used for transient expression. The highest level of transient expression of the green fluorescent protein was obtained with 1 × 105 protoplasts ml−1, 25 μg batch−1 of plasmid vector, and 30% polyethylene glycol 4,000.  相似文献   
938.
939.
The bacterial flagellar motor is driven by the electrochemical potential of specific ions, H+ or Na+. The motor consists of a rotor and stator, and their interaction generates rotation. The stator, which is composed of PomA and PomB in the Na+ motor of Vibrio alginolyticus , is thought to be a torque generator converting the energy of ion flux into mechanical power. We found that specific mutations in PomB, including D24N, F33C and S248F, which caused motility defects, affected the assembly of stator complexes into the polar flagellar motor using green fluorescent protein-fused stator proteins. D24 of PomB is the predicted Na+-binding site. Furthermore, we demonstrated that the coupling ion, Na+, is required for stator assembly and that phenamil (an inhibitor of the Na+-driven motor) inhibited the assembly. Carbonyl cyanide m -chlorophenylhydrazone, which is a proton ionophore that collapses the sodium motive force in this organism at neutral pH, also inhibited the assembly. Thus we conclude that the process of Na+ influx through the channel, including Na+ binding, is essential for the assembly of the stator complex to the flagellar motor as well as for torque generation.  相似文献   
940.
BackgroundAmyloid β (Aβ) peptide (1–40) can cause cognitive impairment.Experimental designWe investigated whether dietary preadministration of eicosapentaenoic acid (EPA) is conducive to cognition learning ability and whether it protects against the impairment of learning ability in rats infused with Aβ peptide (1–40) into the cerebral ventricle.ResultsDietary EPA administered to rats for 12 weeks before the infusion of Aβ into the rat brain significantly decreased the number of reference memory errors (RMEs) and working memory errors (WMEs), suggesting that chronic administration of EPA improves cognition learning ability in rats. EPA preadministered to the Aβ-infused rats significantly reduced the increase in the number of RMEs and WMEs, with concurrent proportional increases in the levels of corticohippocampal EPA and docosahexaenoic acid (DHA) and in the DHA/arachidonic acid molar ratio. Decrease in oxidative stress in these tissues was evaluated by determining the reactive oxygen species and lipid peroxide levels. cDNA microarray analysis revealed that altered genes included those that control synaptic signal transduction, cell communication, membrane-related vesicular transport functions, and enzymes and several other proteins.ConclusionThe present study suggests that EPA, by acting as a precursor for DHA, ameliorates learning deficits associated with Alzheimer's disease and that these effects are modulated by the expression of proteins involved in neuronal plasticity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号