首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   11篇
  2022年   2篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   7篇
  2014年   10篇
  2013年   33篇
  2012年   15篇
  2011年   9篇
  2010年   6篇
  2009年   3篇
  2008年   11篇
  2007年   13篇
  2006年   10篇
  2005年   9篇
  2004年   10篇
  2003年   12篇
  2002年   13篇
  2001年   4篇
  2000年   2篇
  1999年   5篇
  1998年   4篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1976年   2篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有208条查询结果,搜索用时 15 毫秒
21.
22.
The lack of a small-animal model has hampered the analysis of hepatitis C virus (HCV) pathogenesis. The tupaia (Tupaia belangeri), a tree shrew, has shown susceptibility to HCV infection and has been considered a possible candidate for a small experimental model of HCV infection. However, a longitudinal analysis of HCV-infected tupaias has yet to be described. Here, we provide an analysis of HCV pathogenesis during the course of infection in tupaias over a 3-year period. The animals were inoculated with hepatitis C patient serum HCR6 or viral particles reconstituted from full-length cDNA. In either case, inoculation caused mild hepatitis and intermittent viremia during the acute phase of infection. Histological analysis of infected livers revealed that HCV caused chronic hepatitis that worsened in a time-dependent manner. Liver steatosis, cirrhotic nodules, and accompanying tumorigenesis were also detected. To examine whether infectious virus particles were produced in tupaia livers, naive animals were inoculated with sera from HCV-infected tupaias, which had been confirmed positive for HCV RNA. As a result, the recipient animals also displayed mild hepatitis and intermittent viremia. Quasispecies were also observed in the NS5A region, signaling phylogenic lineage from the original inoculating sequence. Taken together, these data suggest that the tupaia is a practical animal model for experimental studies of HCV infection.Hepatitis C virus (HCV) is a small enveloped virus that causes chronic hepatitis worldwide (32). HCV belongs to the genus Hepacivirus of the family Flaviviridae. Its genome comprises 9.6 kb of single-stranded RNA of positive polarity flanked by highly conserved untranslated regions at both the 5′ and 3′ ends (4, 27, 29). The 5′ untranslated region harbors an internal ribosomal entry site (29) that initiates translation of a single open reading frame encoding a large polyprotein comprising about 3,010 amino acids (35). The encoded polyprotein is co- and posttranslationally processed into 10 individual viral proteins (15).In most cases of human infection, HCV is highly potent and establishes lifelong persistent infection, which progressively leads to chronic hepatitis, liver steatosis, cirrhosis, and hepatocellular carcinoma (9, 16, 21). The most effective therapy for treatment of HCV infection is administration of pegylated interferon combined with ribavirin. However, the combination therapy is an arduous regimen for patients; furthermore, HCV genotype 1b does not respond efficiently (19). The prevailing scientific opinion is that a more viable option than interferon treatment is needed.The chimpanzee is the only validated animal model for in vivo studies of HCV infection, and it is capable of reproducing most aspects of human infection (5, 18, 23, 28, 35, 36). The chimpanzee is also the only validated animal for testing the authenticity and infectivity of cloned viral sequences (8, 14, 35, 36). However, chimpanzees are relatively rare and expensive experimental subjects. Cross-species transmission from infected chimpanzees to other nonhuman primates has been tested but has proven unsuccessful for all species evaluated (1).The tupaia (Tupaia belangeri), a tree shrew, is a small nonprimate mammal indigenous to certain areas of Southeast Asia (6). It is susceptible to infection with a wide range of human-pathogenic viruses, including hepatitis B viruses (13, 20, 31), and appears to be permissive for HCV infection (33, 34). In an initial report, approximately one-third of inoculated animals exhibited acute, transient infection, although none developed the high-titer sustained viremia characteristic of infection in humans and chimpanzees (33). The short duration of follow-up precluded any observation of liver pathology. In addition to the putative in vivo model, cultured primary hepatocytes from tupaias can be infected with HCV, leading to de novo synthesis of HCV RNA (37). These reports strongly support tupaias as a valid model for experimental studies of HCV infection. However, longitudinal analyses evaluating the clinical development and pathology of HCV-infected tupaias have yet to be examined. In the present study, we describe the clinical development and pathology of HCV-infected tupaias over an approximately 3-year time course.  相似文献   
23.
We examined the association between residential proximity to 60 Hz high voltage (22-500 kV) overhead transmission lines (HVOTLs) and mental health (MH). The subjects were 223 mothers with a mean age of 37 years. The distance from the subject's residence to the closest HVOTL was measured on a map. MH status was assessed by the SF-36 Health Survey, which was scored on a 0-100 point scale, and an individual with a score of 52 points or less was defined as having poor MH. Logistic regression models were used to examine the association between the distance from the subjects' residence to the closest HVOTL and MH status. The prevalence of poor MH was 15%. Among the 223 subjects, 10 lived within 100 m of a HVOTL. The adjusted odds ratios (OR) for poor MH among those who lived 101-300 m or within 100 m from HVOTL were 1.29 (95% confidence interval (CI): 0.35-10.13) and 1.87 (95% CI: 0.35-10.13), respectively, against the reference category (300+ m). MH status was not significantly associated with the distance between the subject's residence and the closest HVOTL.  相似文献   
24.
The mammalian small GTPase ADP-ribosylation factor 6 (ARF6) plays important roles in a wide variety of cellular events, including endocytosis, actin cytoskeletal reorganization, and phosphoinositide metabolism. However, physiological functions for ARF6 have not previously been examined. Here, we described the consequence of ARF6 ablation in mice, which manifests most obviously in the context of liver development. Livers from ARF6-/- embryos are smaller and exhibit hypocellularity, due to the onset of midgestational liver cell apoptosis. Preceding the apoptosis, however, defective hepatic cord formation is observed; the liver cells migrate abnormally upon exiting the primordial hepatic epithelial sheet and clump rather than becoming dispersed. Consistent with this observation, the ability of hepatocyte growth factor/scatter factor (HGF) to induce hepatic cord-like structures from ARF6-/- fetal hepatocytes cultured in vitro in collagen gel matrix is impaired. Finally, we show that endogenous ARF6 in wild-type fetal hepatocytes is activated in response to HGF stimulation. These results provide evidence that ARF6 is an essential component in the signaling pathway coupling HGF signaling to hepatic cord formation.  相似文献   
25.
Hepatitis C virus core protein (Core) contributes to HCV pathogenicity. Here, we demonstrate that Core impairs growth in budding yeast. We identify HSP90 inhibitors as compounds that reduce intracellular Core protein level and restore yeast growth. Our results suggest that HSC90 (Hsc82) may function in the protection of the nascent Core polypeptide against degradation in yeast and the C-terminal region of Core corresponding to the organelle-interaction domain was responsible for Hsc82-dependent stability. The yeast system may be utilized to select compounds that can direct the C-terminal region to reduce the stability of Core protein.  相似文献   
26.
This data paper reports litter fall data collected in a network of 21 forest sites in Japan. This is the largest litter fall data set freely available in Japan to date. The network is a part of the Monitoring Sites 1000 Project launched by the Ministry of the Environment, Japan. It covers subarctic to subtropical climate zones and the four major forest types in Japan. Twenty-three permanent plots in which usually 25 litter traps were installed were established in old-growth or secondary natural forests. Litter falls were collected monthly from 2004, and sorted into leaves, branches, reproductive structures and miscellaneous. The data provide seasonal patterns and inter-annual dynamics of litter falls, and their geographical patterns, and offer good opportunities for meta-analyses and comparative studies among forests.  相似文献   
27.
Animals recognize biologically relevant sounds, such as the non-harmonic sounds made by some predators, and respond with adaptive behaviors, such as escaping. To clarify which acoustic parameters are used for identifying non-harmonic, noise-like, broadband sounds, guinea pigs were conditioned to a natural target sound by introducing a novel training procedure in which 2 or 3 guinea pigs in a group competed for food. A set of distinct behavioral reactions was reliably induced almost exclusively to the target sound in a 2-week operant training. When fully conditioned, individual animals were separately tested for recognition of a set of target-like sounds that had been modified from the target sound, with spectral ranges eliminated or with fine or coarse temporal structures altered. The results show that guinea pigs are able to identify the noise-like non-harmonic natural sounds by relying on gross spectral compositions and/or fine temporal structures, just as birds are thought to do in the recognition of harmonic birdsongs. These findings are discussed with regard to similarities and dissimilarities to harmonic sound recognition. The results suggest that similar but not identical processing that requires different time scales might be used to recognize harmonic and non-harmonic sounds, at least in small mammals.  相似文献   
28.
Lipids are key components in the viral life cycle that affect host-pathogen interactions. In this study, we investigated the effect of HCV infection on sphingolipid metabolism, especially on endogenous SM levels, and the relationship between HCV replication and endogenous SM molecular species. We demonstrated that HCV induces the expression of the genes (SGMS1 and 2) encoding human SM synthases 1 and 2. We observed associated increases of both total and individual sphingolipid molecular species, as assessed in human hepatocytes and in the detergent-resistant membrane (DRM) fraction in which HCV replicates. SGMS1 expression had a correlation with HCV replication. Inhibition of sphingolipid biosynthesis with a hepatotropic serine palmitoyltransferase (SPT) inhibitor, NA808, suppressed HCV-RNA production while also interfering with sphingolipid metabolism. Further, we identified the SM molecular species that comprise the DRM fraction and demonstrated that these endogenous SM species interacted with HCV nonstructural 5B polymerase to enhance viral replication. Our results reveal that HCV alters sphingolipid metabolism to promote viral replication, providing new insights into the formation of the HCV replication complex and the involvement of host lipids in the HCV life cycle.  相似文献   
29.
The details of the mechanism by which severe acute respiratory syndrome-associated coronavirus (SARS-CoV) causes severe pneumonia are unclear. We investigated the immune responses and pathologies of SARS-CoV-infected BALB/c mice that were immunized intradermally with recombinant vaccinia virus (VV) that expressed either the SARS-CoV spike (S) protein (LC16m8rVV-S) or simultaneously all the structural proteins, including the nucleocapsid (N), membrane (M), envelope (E), and S proteins (LC16m8rVV-NMES) 7-8 wk before intranasal SARS-CoV infection. The LC16m8rVV-NMES-immunized group exhibited as severe pneumonia as the control groups, although LC16m8rVV-NMES significantly decreased the pulmonary SARS-CoV titer to the same extent as LC16m8rVV-S. To identify the cause of the exacerbated pneumonia, BALB/c mice were immunized with recombinant VV that expressed the individual structural proteins of SARS-CoV (LC16mOrVV-N, -M, -E, -S) with or without LC16mOrVV-S (i.e., LC16mOrVV-N, LC16mOrVV-M, LC16mOrVV-E, or LC16mOrVV-S alone or LC16mOrVV-N + LC16mOrVV-S, LC16mOrVV-M + LC16mOrVV-S, or LC16mOrVV-E + LC16mOrVV-S), and infected with SARS-CoV more than 4 wk later. Both LC16mOrVV-N-immunized mice and LC16mOrVV-N + LC16mOrVV-S-immunized mice exhibited severe pneumonia. Furthermore, LC16mOrVV-N-immunized mice upon infection exhibited significant up-regulation of both Th1 (IFN-gamma, IL-2) and Th2 (IL-4, IL-5) cytokines and down-regulation of anti-inflammatory cytokines (IL-10, TGF-beta), resulting in robust infiltration of neutrophils, eosinophils, and lymphocytes into the lung, as well as thickening of the alveolar epithelium. These results suggest that an excessive host immune response against the nucleocapsid protein of SARS-CoV is involved in severe pneumonia caused by SARS-CoV infection. These findings increase our understanding of the pathogenesis of SARS.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号