首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1023篇
  免费   61篇
  国内免费   1篇
  1085篇
  2022年   8篇
  2021年   11篇
  2020年   5篇
  2019年   5篇
  2018年   7篇
  2017年   8篇
  2016年   20篇
  2015年   35篇
  2014年   46篇
  2013年   104篇
  2012年   69篇
  2011年   51篇
  2010年   41篇
  2009年   46篇
  2008年   68篇
  2007年   73篇
  2006年   79篇
  2005年   61篇
  2004年   65篇
  2003年   70篇
  2002年   52篇
  2001年   11篇
  2000年   5篇
  1999年   13篇
  1998年   8篇
  1997年   6篇
  1996年   6篇
  1995年   13篇
  1994年   7篇
  1993年   6篇
  1992年   9篇
  1991年   4篇
  1990年   6篇
  1989年   6篇
  1987年   5篇
  1986年   3篇
  1985年   2篇
  1984年   4篇
  1983年   3篇
  1982年   10篇
  1981年   10篇
  1979年   2篇
  1978年   2篇
  1977年   4篇
  1976年   4篇
  1972年   2篇
  1970年   2篇
  1969年   3篇
  1968年   1篇
  1967年   1篇
排序方式: 共有1085条查询结果,搜索用时 15 毫秒
31.
NAD+ (nicotinamide adenine dinucleotide) is an essential cofactor involved in various biological processes including calorie restriction-mediated life span extension. Administration of nicotinamide riboside (NmR) has been shown to ameliorate deficiencies related to aberrant NAD+ metabolism in both yeast and mammalian cells. However, the biological role of endogenous NmR remains unclear. Here we demonstrate that salvaging endogenous NmR is an integral part of NAD+ metabolism. A balanced NmR salvage cycle is essential for calorie restriction-induced life span extension and stress resistance in yeast. Our results also suggest that partitioning of the pyridine nucleotide flux between the classical salvage cycle and the NmR salvage branch might be modulated by the NAD+-dependent Sir2 deacetylase. Furthermore, two novel deamidation steps leading to nicotinic acid mononucleotide and nicotinic acid riboside production are also uncovered that further underscore the complexity and flexibility of NAD+ metabolism. In addition, utilization of extracellular nicotinamide mononucleotide requires prior conversion to NmR mediated by a periplasmic phosphatase Pho5. Conversion to NmR may thus represent a strategy for the transport and assimilation of large nonpermeable NAD+ precursors. Together, our studies provide a molecular basis for how NAD+ homeostasis factors confer metabolic flexibility.The pyridine nucleotide NAD+ and its reduced form NADH are primary redox carriers involved in metabolism. In addition to serving as a coenzyme in redox reactions, NAD+ also acts as a cosubstrate in protein modification reactions including deacetylation and ADP-ribosylation (1, 2). NAD+ also plays an important role in calorie restriction (CR)2-mediated life span extension via regulating NAD+-dependent longevity factors (3, 4). CR is the most effective regimen known to extend life span in various species (5, 6). CR also ameliorates many age-related diseases such as cancer and diabetes (5). The Sir2 family proteins are NAD+-dependent protein deacetylases, which have been shown to play important roles in several CR models in yeast (3, 7) and higher eukaryotes (8, 9). By coupling the cleavage of NAD+ and deacetylation of target proteins, the Sir2 family proteins serve as a molecular link relaying the cellular energy state to the machinery of life span regulation. Mammalian Sir2 family proteins (SIRT1–7) have also been implicated in stress response, cell survival, and insulin and fat metabolism (810), supporting a role for SIRT proteins in age-related metabolic diseases and perhaps human aging.In eukaryotes, NAD+ is generated by de novo synthesis and by salvaging various intermediary precursors (see Fig. 1A). In yeast, the de novo pathway is mediated by Bna1–5 and Qpt1 (Bna6), which produces nicotinic acid mononucleotide (NaMN) from tryptophan (11). Because the de novo pathway requires molecular oxygen as a substrate, cells grown under anaerobic growth conditions would rely on exogenous NAD+ precursors for the nicotinamide (Nam) moiety (11). Yeast cells also salvage Nam from NAD+ consuming reactions or nicotinic acid (NA) from environment via Tna1, Pnc1, and Npt1, leading to NaMN production. NaMN is then converted to NAD+ via Nma1/2 and Qns1 (see Fig. 1A). Nma1/2 are adenylyltransferases with dual specificity toward NMN and NaMN (12, 13), and Qns1 is a glutamine-dependent NAD+ synthetase. Recent studies also showed that supplementing nicotinamide riboside (NmR) and nicotinic acid riboside (NaR) to growth medium rescued the lethality of NAD+ auxotrophic mutants (1416). Assimilations of exogenous NmR and NaR are mainly mediated by a conserved NmR kinase (Nrk1) and three nucleosidases (Urh1, Pnp1, and Meu1). Nrk1 phosphorylates NmR and NaR to produce nicotinamide mononucleotide (NMN) and NaMN, respectively (14, 16). Urh1, Pnp1, and Meu1 catabolize NmR and NaR to generate Nam and NA (15, 16).Open in a separate windowFIGURE 1.Nicotinamide riboside (NmR) is an endogenous metabolite in yeast. A, the current model of the NAD+ biosynthesis pathways. Extracellular NmR enters the salvage cycle through Nrk1, Urh1, Pnp1, and Meu1. B, NAD+ prototrophic cells release metabolites into growth medium to cross-feed NAD+ auxotrophic cells (the npt1Δqpt1Δ and qns1Δ mutants). Micro-colonies of the NAD+ auxotrophic mutants become visible after 2-day incubation at 30 °C, which show “gradient” growth patterns descending from the side adjacent to WT. C, Nrk1 is required for NAD+ auxotrophic cells to utilize NmR. Anaerobic growth conditions (−O2) are utilized to block de novo NAD+ biosynthesis in the npt1Δ and npt1Δnrk1Δ mutants. D, Nrk1 is required to utilize cross-feeding metabolites. E, cross-feeding activity is modulated by factors in NmR metabolism. Cells defective in NmR utilization (left panel) or transport (middle panel) show increased cross-feeding in spot assays. Overexpressing Nrk1 decreases cross-feeding activity (right panel). The results show growth of the npt1Δqpt1Δ recipient (plated on YPD at a density of ∼9000 cells/cm2) supported by feeder cells (∼2 × 104 cells spotted directly onto the recipient lawn). oe, overexpression.NmR supplementation has recently been shown to be a promising strategy for prevention and treatment of certain diseases (17). For example, NmR protected neurons from axonal degeneration via functioning as a NAD+ precursor (18, 19). Given that several NmR assimilating enzymes and NmR transporters have been characterized and many are conserved from fungi to mammals (14, 15, 2022), NmR has been speculated to be an endogenous NAD+ precursor (17, 23). Here, we provided direct evidence for endogenous NmR as an integral part of NAD+ metabolism in yeast. We also determined the biological significance of salvaging endogenous NmR and studied its role in CR-induced life span extension. Moreover, we demonstrated that the NmR salvage machinery was also required for utilizing exogenous NMN, which has recently been shown to increase NAD+ levels in mammalian cells (24). Finally, we discussed the role of Sir2 in modulating the flux of pyridine nucleotides between alternate routes.  相似文献   
32.
Chromatin-associated protein HIM-17 was previously shown to function in the chromosomal events of meiotic prophase. Here we report an additional role for HIM-17 in regulating the balance between germ cell proliferation and meiotic development. A cryptic function for HIM-17 in promoting meiotic entry and/or inhibiting proliferation was revealed by defects in germline organization in him-17 mutants grown at high temperature (25°) and by a synthetic tumorous germline phenotype in glp-1(ar202); him-17 mutants at 15°.  相似文献   
33.
The Arabidopsis lesion initiation 3 (len3) mutant develops lesions on leaves without pathogen attack. len3 plants exhibit stunted growth, constitutively express pathogenesis-related (PR) genes, PR-1, PR-2, and PR-5, and accumulate elevated levels of salicylic acid (SA). Furthermore, len3 is a semidominant, male gametophytic lethal mutation with partial defects in female gametophytic development. To determine the signaling pathway activated in len3 plants, we crossed the len3 plants with nahG, npr1-1, and pad4-1 plants and analyzed the phenotypes of the double mutants. The len3-conferred phenotypes, including cell death and PR-1 expressions, were suppressed in the double mutants. Thus SA, NPR1, and PAD4 are required for the phenotypes. However, none of these double mutants could completely suppress the len3-conferred stunted growth. This result suggests that an SA-, NPR1-, and PAD4-independent pathway is also involved in the phenotype. Treatment with BTH (benzo(1,2,3)thiadiazole-7-carbothioic acid), an SA analog, induced cell death in len3 nahG plants but not in len3 npr1 or len3 pad4 plants, suggesting the involvement of the PAD4-dependent but SA-independent second signal pathway in cell death in len3 plants.  相似文献   
34.
35.
Hsp90 participates in many distinct aspects of cellular functions and accomplishes these roles by interacting with multiple client proteins. To gain insight into the interactions between Hsp90 and its clients, here we have reduced the protein level of Hsp90 in avian cells by gene targeting in an attempt to elicit the otherwise undetectable (because of the vast amount of cellular Hsp90) Hsp90-interacting proteins. Hsp90beta-deficient cells can grow, albeit more slowly than wild-type cells. B cell antigen receptor signaling is multiply impaired in these mutant cells; in particular, the amount of immunoglobulin M heavy chain protein is markedly reduced. Furthermore, serum activation does not promote ERK phosphorylation in Hsp90beta-deficient cells. These multifaceted depressive effects seem to be provoked independently of each other and possibly recapitulate the proteome-wide in vivo functions of Hsp90. Reintroduction of the Hsp90beta gene efficiently restores all of the defects. Unexpectedly, however, introducing the Hsp90alpha gene is also effective in restoration; thus, these defects might be caused by a reduction in the total expression of Hsp90 rather than by loss of Hsp90beta-specific function.  相似文献   
36.
Age-related macular degeneration (ARMD) is the leading cause of blindness in the elderly population not only Western but also Asian industrial countries. In Caucasian, a polymorphism of the complement factor H gene (CFH), the C allele of rs1061170 (Y402H), was established as the first strong genetic factor for excursively exudative type of ARMD. In this study, we performed an extensive sequencing of the 22 exons in the CFH gene by recruiting 146 exudative ARMD patients and 105 normal controls of Japanese origin and identified 61 polymorphisms. We found that the frequency of the C allele of rs1061170 (Y402H) is much lower (0.04) in Japanese controls than in Caucasians (0.45). No case disease susceptibility to exudative ARMD was noted for rs1061170 (Y402H) (χ 2 = 3.19, P corr = 0.423), or other 12 single nucleotide polymorphisms (SNPs) whose frequency is greater than 0.05. When haplotypes were inferred for 13 SNPs (these 12 SNPs with a frequency greater than 0.05 and rs1061170), three haplotypes whose pattern was similar to those in Caucasians were identified but with substantial difference in frequency. Again we failed to identify genetic association between Japanese exudative ARMD and any of the haplotypes including the J1 haplotype which was shown to be susceptible to ARMD in Caucasians (χ 2 = 3.92, P corr = 0.157). CFH does not appear to be a primary hereditary contributor to ARMD in Japanese. The absence of CFH contribution to ARMD in Japanese may correlate with the findings in ethnic differences of ARMD phenotypes.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.This work was accomplished by equal contribution of two groups organized by the last two authors.  相似文献   
37.
Overcoming Fe deficiency by a transgenic approach in rice   总被引:2,自引:0,他引:2  
Iron (Fe) is an essential microelement for plant growth. Fe availability is particularly limited on calcareous soils, which have high pH. Approximately 30% of the world's soils are considered calcareous with low Fe availability, which results in extensive areas of Fe deficiency in plants. Some graminaceous plants are known to secrete high amounts of mugineic acid family phytosiderophores (MAs) under Fe deficiency. This Fe acquisition system is called the Strategy-II mechanism. Tolerance to Fe deficiency in graminaceous plants is thought to depend on the quantity of MAs secreted by plants under Fe deficiency stress. This system was utilized to enhance the tolerance of rice to low Fe availability. Transgenic rice expressing the barley naat genes, one of the genes for the enzymes on the biosynthetic pathway of MAs, showed tolerance to low Fe availability when grown in a calcareous soil.  相似文献   
38.
We measured angiotensin I-converting enzyme (ACE) activity in a human endothelial cell to characterize the intracellular signal pathways of Klotho. COS-1 cells transfected with naked mouse membrane-form klotho plasmid DNA (pCAGGS-klotho) translated proper Klotho protein. This translated Klotho protein was secreted into the culture medium. Furthermore, ACE activity in human umbilical vein endothelial cells (HUVEC) was upregulated when HUVEC were co-cultured with COS-1 cells that were pre-transfected with pCAGGS-klotho. The conditioned medium from COS-1 cells pre-transfected with pCAGGS-klotho also dose-dependently upregulated ACE in HUVEC. In addition, the conditioned medium induced time- and dose-dependent enhancement of cAMP production in HUVEC. Rp-cAMP, an inhibitor of cAMP-dependent protein kinase A (PKA), inhibited the upregulation of ACE by Klotho protein. Our results suggest that mouse membrane-form Klotho protein acts as a humoral factor to increase ACE activity in HUVEC via a cAMP-PKA-dependent pathway. These findings may provide a new insight into the mechanism of Klotho protein.  相似文献   
39.
To elucidate the genetic alterations that are specific to Thorotrast-induced liver cancers and their possible roles in tumorigenesis, we analyzed loss of heterozygosity (LOH) at 37 loci. Our previous study of liver cancers that were not associated with Thorotrast found LOH at 9 of these loci to be characteristic of intrahepatic cholangiocarcinoma (ICC), at 19 to be characteristic of hepatocellular carcinoma (HCC), and at 9 to be common to both ICC and HCC. LOH analysis was also performed in tissues of cholangiolocellular carcinoma, which is thought to originate from a common stem cell progenitor of hepatocytes and bile duct epithelial cells. We found frequent LOH at D4S1538, D16S2624 and D17S1303 to be common to all the subtypes of liver cancers, independent of the specific carcinogenic agent. In contrast, LOH at D4S1652 generally was not observed in Thorotrast-induced ICC. LOH analysis revealed that Thorotrast-induced ICC shares some LOH features with both ICC and HCC that were not induced by Thorotrast; however, it is more similar to ICC than to HCC in terms of genetic changes. This study could narrow down the crucial chromosomal loci whose deletions are relevant to hepatobiliary carcinogenesis irrespective of the carcinogenic agent. The study of LOH at loci other the those crucial ones may help us understand how the phenotype of liver cancers is determined.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号