全文获取类型
收费全文 | 8227篇 |
免费 | 605篇 |
国内免费 | 1篇 |
专业分类
8833篇 |
出版年
2022年 | 48篇 |
2021年 | 98篇 |
2019年 | 68篇 |
2018年 | 82篇 |
2017年 | 90篇 |
2016年 | 136篇 |
2015年 | 217篇 |
2014年 | 267篇 |
2013年 | 471篇 |
2012年 | 382篇 |
2011年 | 402篇 |
2010年 | 288篇 |
2009年 | 289篇 |
2008年 | 390篇 |
2007年 | 419篇 |
2006年 | 392篇 |
2005年 | 382篇 |
2004年 | 420篇 |
2003年 | 391篇 |
2002年 | 322篇 |
2001年 | 311篇 |
2000年 | 296篇 |
1999年 | 275篇 |
1998年 | 106篇 |
1997年 | 76篇 |
1996年 | 69篇 |
1995年 | 73篇 |
1994年 | 58篇 |
1993年 | 64篇 |
1992年 | 140篇 |
1991年 | 146篇 |
1990年 | 140篇 |
1989年 | 127篇 |
1988年 | 113篇 |
1987年 | 131篇 |
1986年 | 107篇 |
1985年 | 90篇 |
1984年 | 72篇 |
1983年 | 45篇 |
1982年 | 57篇 |
1981年 | 56篇 |
1979年 | 57篇 |
1978年 | 53篇 |
1977年 | 59篇 |
1974年 | 53篇 |
1973年 | 57篇 |
1972年 | 40篇 |
1970年 | 40篇 |
1969年 | 50篇 |
1968年 | 48篇 |
排序方式: 共有8833条查询结果,搜索用时 15 毫秒
51.
52.
Suzuki T Hara I Nakano M Zhao G Lennarz WJ Schindelin H Taniguchi N Totani K Matsuo I Ito Y 《The Journal of biological chemistry》2006,281(31):22152-22160
Peptide:N-glycanase (PNGase) is the deglycosylating enzyme, which releases N-linked glycan chains from N-linked glycopeptides and glycoproteins. Recent studies have revealed that the cytoplasmic PNGase is involved in the degradation of misfolded/unassembled glycoproteins. This enzyme has a Cys, His, and Asp catalytic triad, which is required for its enzymatic activity and can be inhibited by "free" N-linked glycans. These observations prompted us to investigate the possible use of haloacetamidyl derivatives of N-glycans as potent inhibitors and labeling reagents of this enzyme. Using a cytoplasmic PNGase from budding yeast (Png1), Man9GlcNAc2-iodoacetoamide was shown to be a strong inhibitor of this enzyme. The inhibition was found to be through covalent binding of the carbohydrate to a single Cys residue on Png1, and the binding was highly selective. The mutant enzyme in which Cys191 of the catalytic triad was changed to Ala did not bind to the carbohydrate probe, suggesting that the catalytic Cys is the binding site for this compound. Precise determination of the carbohydrate attachment site by mass spectrometry clearly identified Cys191 as the site of covalent attachment. Molecular modeling of N,N'-diacetylchitobiose (chitobiose) binding to the protein suggests that the carbohydrate binding site is distinct from but adjacent to that of Z-VAD-fmk, a peptide-based inhibitor of this enzyme. These results suggest that cytoplasmic PNGase has a separate binding site for chitobiose and other carbohydrates, and haloacetamide derivatives can irreversibly inhibit that catalytic Cys in a highly specific manner. 相似文献
53.
54.
The Sec machinery (or translocase) provides a major pathway of protein translocation from the cytosol across the cytoplasmic membrane in bacteria. The SecA ATPase interacts dynamically with the SecYEG integral membrane components to drive the transmembrane movement of newly synthesized preproteins. This pathway is also used for integration of some membrane proteins and the Sec translocase interacts with other cellular components to achieve its cellular roles. The detailed protein interactions involved in these processes are being actively studied and a structural understanding of the protein-conducting channel has started to emerge. 相似文献
55.
Maeda M Hasegawa H Hyodo T Ito S Asano E Yuang H Funasaka K Shimokata K Hasegawa Y Hamaguchi M Senga T 《Molecular biology of the cell》2011,22(20):3840-3852
Rho GTPases are molecular switches that transmit biochemical signals in response to extracellular stimuli to elicit changes in the actin cytoskeleton. Rho GTPases cycle between an active, GTP-bound state and an inactive, GDP-bound state. These states are regulated by two distinct families of proteins-guanine nucleotide exchange factors and GTPase-activating proteins (GAPs). We studied the role of a previously uncharacterized GAP, ARHGAP18 (MacGAP). Overexpression of ARHGAP18 suppressed the activity of RhoA and disrupted stress fiber formation. Conversely, silencing of ARHGAP18 by small interfering RNA transfection-enhanced stress fiber formation and induced rounding of cells. We examined the role of ARHGAP18 in cell spreading and migration. Immunofluorescence analysis revealed that ARHGAP18 was localized to the leading edge during cell spreading and migration. ARHGAP18-knockdown cells showed impaired spreading, premature formation of stress fibers, and sustained activation of RhoA upon cell attachment. In addition, knockdown and overexpression of ARHGAP18 resulted in the inhibition and promotion of cell migration, respectively. Furthermore, ARHGAP18 was required for the polarization of cells for migration. Our results define ARHGAP18 as one of the crucial factors for the regulation of RhoA for the control of cell shape, spreading, and migration. 相似文献
56.
Hirotoki Ohkubo Yoshiya Ito Tsutomu Minamino Koji Eshima Ken Kojo Shin-ichiro Okizaki Mitsuhiro Hirata Masabumi Shibuya Masahiko Watanabe Masataka Majima 《PloS one》2014,9(8)
Liver repair after acute liver injury is characterized by hepatocyte proliferation, removal of necrotic tissue, and restoration of hepatocellular and hepatic microvascular architecture. Macrophage recruitment is essential for liver tissue repair and recovery from injury; however, the underlying mechanisms are unclear. Signaling through vascular endothelial growth factor receptor 1 (VEGFR1) is suggested to play a role in macrophage migration and angiogenesis. The aim of the present study was to examine the role of VEGFR1 in liver repair and sinusoidal reconstruction after hepatic ischemia/reperfusion (I/R). VEGFR1 tyrosine kinase knockout mice (VEGFR1 TK-/- mice) and wild-type (WT) mice were subjected to hepatic warm I/R, and the processes of liver repair and sinusoidal reconstruction were examined. Compared with WT mice, VEGFR1 TK-/- mice exhibited delayed liver repair after hepatic I/R. VEGFR1-expressing macrophages recruited to the injured liver showed reduced expression of epidermal growth factor (EGF). VEGFR1 TK-/- mice also showed evidence of sustained sinusoidal functional and structural damage, and reduced expression of pro-angiogenic factors. Treatment of VEGFR1 TK-/- mice with EGF attenuated hepatoceullar and sinusoidal injury during hepatic I/R. VEGFR1 TK-/- bone marrow (BM) chimeric mice showed impaired liver repair and sinusoidal reconstruction, and reduced recruitment of VEGFR1-expressing macrophages to the injured liver. VEGFR1-macrophages recruited to the liver during hepatic I/R contribute to liver repair and sinusoidal reconstruction. VEGFR1 activation is a potential therapeutic strategy for promoting liver repair and sinusoidal restoration after acute liver injury. 相似文献
57.
MOTIVATION: In contrast with conventional PCR using a pair of specific primers, some applications utilize a single unique primer in combination with a common primer, thereby relying solely on the former for specificity. These applications include rapid amplification of cDNA ends (RACE), adaptor-tagged competitive PCR (ATAC-PCR), PCR-mediated genome walking and so forth. Since the primers designed by conventional methods often fail to work in these applications, an improved strategy is required, particularly, for a large-scale analysis. RESULTS: Based on the structure of 'off-target' products in the ATAC-PCR, we reasoned that the practical determinant of the specificity of primers may not be the uniqueness of entire sequence but that of the shortest 3'-end subsequence that exceeds a threshold of duplex stability. We termed such a subsequence as a 'specificity-determining subsequence' (SDSS) and developed a simple algorithm to predict the performance of the primer: the algorithm identifies the SDSS of each primer and examines its uniqueness in the target genome. The primers designed using this algorithm worked much better than those designed using a conventional method in both ATAC-PCR and 5'-RACE experiments. Thus, the algorithm will be generally useful for improving various PCR-based applications. 相似文献
58.
Sakano S Hasegawa Y Murata Y Ito T Genda E Iwata H Ishiguro N Seo H 《Biochemical and biophysical research communications》2002,293(2):680-685
Basic fibroblast growth factor (bFGF) is reported to stimulate repair of fracture and bony defects in in vivo animal studies. However, most studies performed in vitro demonstrate inhibitory effect of bFGF on cartilage and bone differentiation. To understand the discrepancy observed in in vivo and in vitro studies, we evaluated the effect of bFGF on chondro-osteogenesis initiated by bone matrix powder (MP). MP was implanted in the murine hamstring muscles with or without administration of bFGF. Injection of 1 microg of bFGF markedly reduced the size of heterotopic bone induced by MP, as detected by X-ray. Injection of 10 microg of bFGF completely inhibited ossification and only fibrous tissues were observed at the site of MP implantation. The expressions of alkaline phosphatase and osteocalcin mRNAs, markers for bone differentiation, were completely suppressed by 10 microg of bFGF. These results demonstrate the inhibitory effect of bFGF on endochondral ossification in vivo, implicating a precaution for its use in musculo-skeletal disorders. 相似文献
59.
Most delta-endotoxins produced by Bacillus thuringiensis require proteolytic processing in order to become active. The in vitro and in vivo activation processes of Cry39A, a delta-endotoxin that is highly toxic to Anopheles stephensi, were investigated. Cry39A with a molecular mass of 72 kDa was processed in vitro into a 60 kDa fragment by trypsin and gut extract from A. stephensi larvae. N-terminal amino acid sequencing of the 60 kDa fragment revealed that trypsin and the protease(s) in the gut extract cleaved Cry39A between Arg(61) and Gly(62). In contrast, 40 and 25 kDa polypeptides were generated in vivo by intramolecular cleavage of the 60 kDa fragment in A. stephensi larvae. Further, a co-precipitation assay was used to investigate the binding property of the activated Cry39A to A. stephensi BBMV. Cry39A bound to A. stephensi BBMV specifically and did not compete with the Cry4Aa toxin. This indicated that the binding molecule(s) for Cry39A might differ from those for Cry4A. In addition, Cry39A preferentially bound to the Triton X-100-insoluble membrane fraction. 相似文献
60.
Nathan D. Mathewson Orr Ashenberg Itay Tirosh Simon Gritsch Elizabeth M. Perez Sascha Marx Livnat Jerby-Arnon Rony Chanoch-Myers Toshiro Hara Alyssa R. Richman Yoshinaga Ito Jason Pyrdol Mirco Friedrich Kathrin Schumann Michael J. Poitras Prafulla C. Gokhale L. Nicolas Gonzalez Castro Marni E. Shore Kai W. Wucherpfennig 《Cell》2021,184(5):1281-1298.e26