首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8227篇
  免费   605篇
  国内免费   1篇
  8833篇
  2022年   48篇
  2021年   98篇
  2019年   68篇
  2018年   82篇
  2017年   90篇
  2016年   136篇
  2015年   217篇
  2014年   267篇
  2013年   471篇
  2012年   382篇
  2011年   402篇
  2010年   288篇
  2009年   289篇
  2008年   390篇
  2007年   419篇
  2006年   392篇
  2005年   382篇
  2004年   420篇
  2003年   391篇
  2002年   322篇
  2001年   311篇
  2000年   296篇
  1999年   275篇
  1998年   106篇
  1997年   76篇
  1996年   69篇
  1995年   73篇
  1994年   58篇
  1993年   64篇
  1992年   140篇
  1991年   146篇
  1990年   140篇
  1989年   127篇
  1988年   113篇
  1987年   131篇
  1986年   107篇
  1985年   90篇
  1984年   72篇
  1983年   45篇
  1982年   57篇
  1981年   56篇
  1979年   57篇
  1978年   53篇
  1977年   59篇
  1974年   53篇
  1973年   57篇
  1972年   40篇
  1970年   40篇
  1969年   50篇
  1968年   48篇
排序方式: 共有8833条查询结果,搜索用时 15 毫秒
51.
52.
Peptide:N-glycanase (PNGase) is the deglycosylating enzyme, which releases N-linked glycan chains from N-linked glycopeptides and glycoproteins. Recent studies have revealed that the cytoplasmic PNGase is involved in the degradation of misfolded/unassembled glycoproteins. This enzyme has a Cys, His, and Asp catalytic triad, which is required for its enzymatic activity and can be inhibited by "free" N-linked glycans. These observations prompted us to investigate the possible use of haloacetamidyl derivatives of N-glycans as potent inhibitors and labeling reagents of this enzyme. Using a cytoplasmic PNGase from budding yeast (Png1), Man9GlcNAc2-iodoacetoamide was shown to be a strong inhibitor of this enzyme. The inhibition was found to be through covalent binding of the carbohydrate to a single Cys residue on Png1, and the binding was highly selective. The mutant enzyme in which Cys191 of the catalytic triad was changed to Ala did not bind to the carbohydrate probe, suggesting that the catalytic Cys is the binding site for this compound. Precise determination of the carbohydrate attachment site by mass spectrometry clearly identified Cys191 as the site of covalent attachment. Molecular modeling of N,N'-diacetylchitobiose (chitobiose) binding to the protein suggests that the carbohydrate binding site is distinct from but adjacent to that of Z-VAD-fmk, a peptide-based inhibitor of this enzyme. These results suggest that cytoplasmic PNGase has a separate binding site for chitobiose and other carbohydrates, and haloacetamide derivatives can irreversibly inhibit that catalytic Cys in a highly specific manner.  相似文献   
53.
54.
The Sec machinery (or translocase) provides a major pathway of protein translocation from the cytosol across the cytoplasmic membrane in bacteria. The SecA ATPase interacts dynamically with the SecYEG integral membrane components to drive the transmembrane movement of newly synthesized preproteins. This pathway is also used for integration of some membrane proteins and the Sec translocase interacts with other cellular components to achieve its cellular roles. The detailed protein interactions involved in these processes are being actively studied and a structural understanding of the protein-conducting channel has started to emerge.  相似文献   
55.
Rho GTPases are molecular switches that transmit biochemical signals in response to extracellular stimuli to elicit changes in the actin cytoskeleton. Rho GTPases cycle between an active, GTP-bound state and an inactive, GDP-bound state. These states are regulated by two distinct families of proteins-guanine nucleotide exchange factors and GTPase-activating proteins (GAPs). We studied the role of a previously uncharacterized GAP, ARHGAP18 (MacGAP). Overexpression of ARHGAP18 suppressed the activity of RhoA and disrupted stress fiber formation. Conversely, silencing of ARHGAP18 by small interfering RNA transfection-enhanced stress fiber formation and induced rounding of cells. We examined the role of ARHGAP18 in cell spreading and migration. Immunofluorescence analysis revealed that ARHGAP18 was localized to the leading edge during cell spreading and migration. ARHGAP18-knockdown cells showed impaired spreading, premature formation of stress fibers, and sustained activation of RhoA upon cell attachment. In addition, knockdown and overexpression of ARHGAP18 resulted in the inhibition and promotion of cell migration, respectively. Furthermore, ARHGAP18 was required for the polarization of cells for migration. Our results define ARHGAP18 as one of the crucial factors for the regulation of RhoA for the control of cell shape, spreading, and migration.  相似文献   
56.
Liver repair after acute liver injury is characterized by hepatocyte proliferation, removal of necrotic tissue, and restoration of hepatocellular and hepatic microvascular architecture. Macrophage recruitment is essential for liver tissue repair and recovery from injury; however, the underlying mechanisms are unclear. Signaling through vascular endothelial growth factor receptor 1 (VEGFR1) is suggested to play a role in macrophage migration and angiogenesis. The aim of the present study was to examine the role of VEGFR1 in liver repair and sinusoidal reconstruction after hepatic ischemia/reperfusion (I/R). VEGFR1 tyrosine kinase knockout mice (VEGFR1 TK-/- mice) and wild-type (WT) mice were subjected to hepatic warm I/R, and the processes of liver repair and sinusoidal reconstruction were examined. Compared with WT mice, VEGFR1 TK-/- mice exhibited delayed liver repair after hepatic I/R. VEGFR1-expressing macrophages recruited to the injured liver showed reduced expression of epidermal growth factor (EGF). VEGFR1 TK-/- mice also showed evidence of sustained sinusoidal functional and structural damage, and reduced expression of pro-angiogenic factors. Treatment of VEGFR1 TK-/- mice with EGF attenuated hepatoceullar and sinusoidal injury during hepatic I/R. VEGFR1 TK-/- bone marrow (BM) chimeric mice showed impaired liver repair and sinusoidal reconstruction, and reduced recruitment of VEGFR1-expressing macrophages to the injured liver. VEGFR1-macrophages recruited to the liver during hepatic I/R contribute to liver repair and sinusoidal reconstruction. VEGFR1 activation is a potential therapeutic strategy for promoting liver repair and sinusoidal restoration after acute liver injury.  相似文献   
57.
MOTIVATION: In contrast with conventional PCR using a pair of specific primers, some applications utilize a single unique primer in combination with a common primer, thereby relying solely on the former for specificity. These applications include rapid amplification of cDNA ends (RACE), adaptor-tagged competitive PCR (ATAC-PCR), PCR-mediated genome walking and so forth. Since the primers designed by conventional methods often fail to work in these applications, an improved strategy is required, particularly, for a large-scale analysis. RESULTS: Based on the structure of 'off-target' products in the ATAC-PCR, we reasoned that the practical determinant of the specificity of primers may not be the uniqueness of entire sequence but that of the shortest 3'-end subsequence that exceeds a threshold of duplex stability. We termed such a subsequence as a 'specificity-determining subsequence' (SDSS) and developed a simple algorithm to predict the performance of the primer: the algorithm identifies the SDSS of each primer and examines its uniqueness in the target genome. The primers designed using this algorithm worked much better than those designed using a conventional method in both ATAC-PCR and 5'-RACE experiments. Thus, the algorithm will be generally useful for improving various PCR-based applications.  相似文献   
58.
Inhibitory effect of bFGF on endochondral heterotopic ossification   总被引:4,自引:0,他引:4  
Basic fibroblast growth factor (bFGF) is reported to stimulate repair of fracture and bony defects in in vivo animal studies. However, most studies performed in vitro demonstrate inhibitory effect of bFGF on cartilage and bone differentiation. To understand the discrepancy observed in in vivo and in vitro studies, we evaluated the effect of bFGF on chondro-osteogenesis initiated by bone matrix powder (MP). MP was implanted in the murine hamstring muscles with or without administration of bFGF. Injection of 1 microg of bFGF markedly reduced the size of heterotopic bone induced by MP, as detected by X-ray. Injection of 10 microg of bFGF completely inhibited ossification and only fibrous tissues were observed at the site of MP implantation. The expressions of alkaline phosphatase and osteocalcin mRNAs, markers for bone differentiation, were completely suppressed by 10 microg of bFGF. These results demonstrate the inhibitory effect of bFGF on endochondral ossification in vivo, implicating a precaution for its use in musculo-skeletal disorders.  相似文献   
59.
Most delta-endotoxins produced by Bacillus thuringiensis require proteolytic processing in order to become active. The in vitro and in vivo activation processes of Cry39A, a delta-endotoxin that is highly toxic to Anopheles stephensi, were investigated. Cry39A with a molecular mass of 72 kDa was processed in vitro into a 60 kDa fragment by trypsin and gut extract from A. stephensi larvae. N-terminal amino acid sequencing of the 60 kDa fragment revealed that trypsin and the protease(s) in the gut extract cleaved Cry39A between Arg(61) and Gly(62). In contrast, 40 and 25 kDa polypeptides were generated in vivo by intramolecular cleavage of the 60 kDa fragment in A. stephensi larvae. Further, a co-precipitation assay was used to investigate the binding property of the activated Cry39A to A. stephensi BBMV. Cry39A bound to A. stephensi BBMV specifically and did not compete with the Cry4Aa toxin. This indicated that the binding molecule(s) for Cry39A might differ from those for Cry4A. In addition, Cry39A preferentially bound to the Triton X-100-insoluble membrane fraction.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号