首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   557篇
  免费   40篇
  597篇
  2021年   6篇
  2019年   3篇
  2018年   4篇
  2017年   3篇
  2016年   9篇
  2015年   7篇
  2014年   14篇
  2013年   34篇
  2012年   21篇
  2011年   25篇
  2010年   18篇
  2009年   12篇
  2008年   37篇
  2007年   21篇
  2006年   24篇
  2005年   28篇
  2004年   27篇
  2003年   22篇
  2002年   30篇
  2001年   15篇
  2000年   13篇
  1999年   20篇
  1998年   10篇
  1997年   4篇
  1996年   5篇
  1995年   4篇
  1994年   8篇
  1993年   3篇
  1992年   21篇
  1991年   21篇
  1990年   14篇
  1989年   10篇
  1988年   12篇
  1987年   9篇
  1986年   8篇
  1985年   9篇
  1984年   6篇
  1983年   8篇
  1982年   3篇
  1981年   6篇
  1980年   3篇
  1979年   6篇
  1978年   5篇
  1977年   6篇
  1974年   2篇
  1973年   2篇
  1972年   4篇
  1971年   4篇
  1969年   2篇
  1968年   2篇
排序方式: 共有597条查询结果,搜索用时 31 毫秒
61.
Two isoforms of a heme oxygenase gene, ho1 and ho2, with 51% identity in amino acid sequence have been identified in the cyanobacterium Synechocystis sp. PCC 6803. Isoform-1, Syn HO-1, has been characterized, while isoform-2, Syn HO-2, has not. In this study, a full-length ho2 gene was cloned using synthetic DNA and Syn HO-2 was demonstrated to be highly expressed in Escherichia coli as a soluble, catalytically active protein. Like Syn HO-1, the purified Syn HO-2 bound hemin stoichiometrically to form a heme-enzyme complex and degraded heme to biliverdin IXalpha, CO and iron in the presence of reducing systems such as NADPH/ferredoxin reductase/ferredoxin and sodium ascorbate. The activity of Syn HO-2 was found to be comparable to that of Syn HO-1 by measuring the amount of bilirubin formed. In the reaction with hydrogen peroxide, Syn HO-2 converted heme to verdoheme. This shows that during the conversion of hemin to alpha-meso-hydroxyhemin, hydroperoxo species is the activated oxygen species as in other heme oxygenase reactions. The absorption spectrum of the hemin-Syn HO-2 complex at neutral pH showed a Soret band at 412 nm and two peaks at 540 nm and 575 nm, features observed in the hemin-Syn HO-1 complex at alkaline pH, suggesting that the major species of iron(III) heme iron at neutral pH is a hexa-coordinate low spin species. Electron paramagnetic resonance (EPR) revealed that the iron(III) complex was in dynamic equilibrium between low spin and high spin states, which might be caused by the hydrogen bonding interaction between the distal water ligand and distal helix components. These observations suggest that the structure of the heme pocket of the Syn HO-2 is different from that of Syn HO-1.  相似文献   
62.
A rapid induction of effector functions in memory T cells provides rapid and intensified protection against reinfection. To determine potential roles of IL-15 in early expansion and activation of memory CD8+ T cells in secondary immune response, we examined the cell division and cytotoxicity of memory CD8+ T cells expressing OVA(257-264)/Kb-specific TCR that were transferred into IL-15-transgenic (Tg) mice, IL-15 knockout (KO) mice, or control C57BL/6 mice followed by challenge with recombinant Listeria monocytogenes expressing OVA (rLM-OVA). In vivo CTL activities and expression of granzyme B of the transferred CD8+ T cells were significantly higher in the IL-15 Tg mice but lower in the IL-15 KO mice than those in control mice at the early stage after challenge with rLM-OVA. In contrast, there was no difference in the cell division in IL-15 Tg mice and IL-15 KO mice compared with those in control mice. In vivo administration of rIL-15 conferred robust protection against reinfection via induction of granzyme B in the memory CD8+ T cells. These results suggest that IL-15 plays an important role in early activation of memory CD8+ T cells.  相似文献   
63.
The pathogenesis of Mycoplasma pneumoniae infection is considered to be in part attributed to excessive immune responses. Recently, lipoproteins from mycoplasmas have been reported to induce NF-kappaB activation. In this study, we examined the ability of lipoproteins from M. pneumoniae to activate NF-kappaB, and the active component responsible for the NF-kappaB activation was identified. Lipid-associated membrane proteins from M. pneumoniae were found to induce NF-kappaB through TLR 2 in a human monocytic cell line, THP-1. The active component of the Lipid-associated membrane proteins was a subunit b of F0F1-type ATPase (F0F1-ATPase). The F0F1-ATPase is assumed to contain two palmitic acids. The activation of NF-kappaB by the F0F1-ATPase was inhibited by a dominant negative construct of TLR1 and TLR6. These results indicate that the activation of NF-kappaB by F0F1-ATPase is dependent on TLR1, TLR2, and TLR6. The activity of the F0F1-ATPase was decreased with pretreatment of lipoprotein lipase but not protease, indicating that the lipid moiety of the F0F1-ATPase was important for the NF-kappaB activation. Thus, a dipalmitoylated lipoprotein from M. pneumoniae was found to activate NF-kappaB through TLR1, TLR2, and TLR6.  相似文献   
64.
Sphingomyelin (SM) synthase has been assumed to be involved in both cell death and survival by regulating pro-apoptotic mediator ceramide and pro-survival mediator diacylglycerol. However, its precise functions are ambiguous due to the lack of molecular cloning of SM synthase gene(s). We isolated WR19L/Fas-SM(-) mouse lymphoid cells, which show a defect of SM at the plasma membrane due to the lack of SM synthase activity and resistance to cell death induced by an SM-directed cytolytic protein lysenin. WR19L/Fas-SM(-) cells were also highly susceptible to methyl-beta-cyclodextrin (MbetaCD) as compared with the WR19L/Fas-SM(+) cells, which are capable of SM synthesis. By expression cloning method using WR19L/Fas-SM(-) cells and MbetaCD-based selection, we have succeeded in cloning of a human cDNA responsible for SM synthase activity. The cDNA encodes a peptide of 413 amino acids named SMS1 (putative molecular mass, 48.6 kDa), which contains a sterile alpha motif domain near the N-terminal region and four predicted transmembrane domains. WR19L/Fas-SM(-) cells expressing SMS1 cDNA (WR19L/Fas-SMS1) restored the resistance against MbetaCD, the accumulation of SM at the plasma membrane, and SM synthesis by transferring phosphocholine from phosphatidylcholine to ceramide. Furthermore, WR19L/Fas-SMS1 cells, as well as WR19L/Fas-SM(-) cells supplemented with exogenous SM, restored cell growth ability in serum-free conditions, where the growth of WR19L/Fas-SM(-) cells was severely inhibited. The results suggest that SMS1 is responsible for SM synthase activity in mammalian cells and plays a critical role in cell growth of mouse lymphoid cells.  相似文献   
65.
Signaling through the tumor necrosis factor receptor (TNFR) superfamily can lead to apoptosis or promote cell survival, proliferation, and differentiation. A subset of this family, including TNFR1 and Fas, signals cell death via an intracellular death domain and therefore is termed the death receptor (DR) family. In this study, we identified new members of the DR family, designated xDR-M1 and xDR-M2, in Xenopus laevis. The two proteins, which show high homology (71.7% identity), have characteristics of the DR family, that is, three cysteine-rich domains, a transmembrane domain, and a death domain. To elucidate how members of xDR-M subfamily regulate cell death and survival, we examined the intracellular signaling mediated by these receptors in 293T and A6 cells. Overexpression of xDR-M2 induced apoptosis and activated caspase-8, c-Jun N-terminal kinase, and nuclear factor-kappaB, although its death domain to a greater extent than did that of xDR-M1 in 293T cells. A caspase-8 inhibitor potently blocked this apoptosis induced by xDR-M2. In contrast, xDR-M1 showed a greater ability to induce apoptosis through its death domain than did xDR-M2 in A6 cells. Interestingly, a general serine protease inhibitor, but not the caspase-8 inhibitor, blocked the xDR-M1-induced apoptosis. These results imply that activation of caspase-8 or serine protease(s) may be required for the xDR-M2- or xDR-M1-induced apoptosis, respectively. Although xDR-M1 and xDR-M2 are very similar to each other, the difference in their death domains may result in diverse signaling, suggesting distinct roles of xDR-M1 and xDR-M2 in cell death or survival.  相似文献   
66.
Lipids seem to have various roles in cellular senescence. We found that cardiolipin very sensitively inhibits growth of normal human fibroblasts, whereas other phospholipids do not at 100 times higher concentrations. Growth arrested cells showed morphology similar to those of normally senesced cells and strongly induced senescence-associated beta-galactosidase. Senescence markers such as the p21(waf1/sdi-1), fibronectin, and collagenase-I genes were significantly upregulated by cardiolipin. In addition, caldiolipin significantly increased in normally senesced human fibroblasts leaving other phospholipids unaltered. These results suggest that accumulation of cardiolipin is one of the causes for replicative senescence.  相似文献   
67.
Aldoxime dehydratase (OxdA), which is a novel heme protein, catalyzes the dehydration of an aldoxime to a nitrile even in the presence of water in the reaction mixture. The combination of site-directed mutagenesis of OxdA (mutation of all conserved histidines in the aldoxime dehydratase superfamily), estimation of the heme contents and specific activities of the mutants, and CD and resonance Raman spectroscopic analyses led to the identification of the proximal and distal histidines in this unique enzyme. The heme contents and CD spectra in the far-UV region of all mutants except for the H299A one were almost identical to those of the wild-type OxdA, whereas the H299A mutant lost the ability of binding heme, demonstrating that His(299) is the proximal histidine. On the other hand, substitution of alanine for His(320) did not affect the overall structure of OxdA but caused loss of its ability of carbon-nitrogen triple bond synthesis and a lower shift of the Fe-C stretching band in the resonance Raman spectrum for the CO-bound form. Furthermore, the pH dependence of the wild-type OxdA closely followed the His protonation curves observed for other proteins. These findings suggest that His(320) is located in the distal heme pocket of OxdA and would donate a proton to the substrate in the aldoxime dehydration mechanism.  相似文献   
68.
A series of ethyl 4-(2-aryloxyhexyloxy)benzoates was prepared and tested for their activity to induce precocious metamorphosis in larvae of the silkworm. Phenyl analog 5 showed activity comparable to that of the 6-methyl-3-pyridyl analog reported as a novel anti-JH agent. The activity of 5 could be fully counteracted by methoprene, a JH agonist. The ethoxycarbonyl group of 5 was essential for its activity.  相似文献   
69.
CCR4-NOT complex 7 (Cnot7) was identified as a regulator of gene expression in yeast and evolutionally conserved in mammals. Cnot7 deficient male mice exhibit abnormality in spermatogenesis. As these mice contained construct to express LacZ, we followed the expression patterning in these animals. LacZ was expressed in osteoblasts located in the primary spongiosa in adult mice. Cellular analysis indicated that LacZ is expressed in osteoblasts but not in osteoclasts. In the mineralized nodules formed in the culture of bone marrow cells obtained from Cnot7 +/- mice, LacZ expression was mainly observed in the cells forming mineralized nodules but not in un-mineralized area scattered around the periphery of the nodules. LacZ blue positive cells were gradually depositing minerals along its time course of the in vitro mineralization assay. Cnot7 expression was enhanced by the treatment with BMP. These data suggest that Cnot7 is expressed in osteoblasts and is associated with mineralization.  相似文献   
70.
IL-15 regulates CD8+ T cell contraction during primary infection   总被引:3,自引:0,他引:3  
During the course of acute infection with an intracellular pathogen, Ag-specific T cells proliferate in the expansion phase, and then most of the T cells die by apoptosis in the following contraction phase, but the few that survive become memory cells and persist for a long period of time. Although IL-15 is known to play an important role in long-term maintenance of memory CD8+ T cells, the potential roles of IL-15 in CD8+ T cell contraction are not known. Using an adoptive transfer system of OT-I cells expressing OVA257-264/Kb-specific TCR into control, IL-15 knockout (KO) and IL-15 transgenic (Tg) mice followed by challenge with recombinant Listeria monocytogenes expressing OVA, we found that the survival of CD44+CD62L-CD127- effector OT-I cells during the contraction phase is critically dependent on IL-15. In correlation with the expression level of Bcl-2 in OT-I cells, the number of OT-I cells was markedly reduced in IL-15 KO mice but remained at a high level in IL-15 Tg mice during the contraction phase, compared with control mice. In vivo administration of rIL-15 during the contraction phase in IL-15 KO mice inhibited the contraction of effector OT-I cells accompanied by up-regulation of Bcl-2 expression. Furthermore, enforced expression of Bcl-2 protected the majority of effector OT-I cells from death in IL-15 KO mice after infection. These results suggest that IL-15 plays a critical role in protecting effector CD8+ T cells from apoptosis during the contraction phase following a microbial infection via inducing antiapoptotic molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号