首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   16篇
  273篇
  2022年   2篇
  2021年   3篇
  2019年   2篇
  2018年   3篇
  2016年   5篇
  2015年   7篇
  2014年   7篇
  2013年   16篇
  2012年   16篇
  2011年   11篇
  2010年   14篇
  2009年   4篇
  2008年   21篇
  2007年   8篇
  2006年   13篇
  2005年   18篇
  2004年   19篇
  2003年   15篇
  2002年   21篇
  2001年   1篇
  2000年   1篇
  1999年   7篇
  1998年   7篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   4篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1983年   3篇
  1982年   1篇
  1981年   4篇
  1979年   3篇
  1978年   2篇
  1977年   5篇
  1976年   2篇
  1974年   3篇
  1972年   2篇
  1971年   1篇
  1969年   1篇
排序方式: 共有273条查询结果,搜索用时 0 毫秒
51.
52.
The c-Jun N-terminal kinases (JNKs) are a subfamily of the mitogen-activated protein kinases (MAPKs). The JNKs are encoded by three separate genes (jnk1, jnk2, and jnk3), which are spliced alternatively to create 10 JNK isoforms that are either p46 or p54 in size. In this study, we found that the p52 form of JNK emerged in human leukemia MOLT-4 or U937 cells following X-irradiation or heat treatment. The accumulation of p52 coincided with the reduction of p54 JNK. On the other hand, the amounts of p46 JNK did not change by X-irradiation. Induction of the p52 form of JNK also paralleled the appearance of the active form of caspase-3 and was suppressed by a caspase-specific inhibitor, Ac-DEVD-CHO, but not by Ac-YVAD-CHO. In vitro cleavage assays indicated that recombinant human JNK1beta2 and JNK2beta2 were cleaved by caspase-3, and that the mutation of aspartic acid at position 413 of JNK1beta2 or 410 of JNK2beta2 to alanine abolished the cleavage. Altogether, our results demonstrated that p54 JNKs, at least JNK1beta2 and JNK2beta2, were new selective targets of caspases in JNK splicing variants, and suggested that the p52 form could serve as a marker of apoptosis.  相似文献   
53.
Previous studies from our laboratory have shown that Chinese hamster V79 cells mutated to high level resistance to amphotericin B have a lower cellular level of cholesterol, the target molecule for the polyene antibiotic. Two amphotericin B-resistant (AMBR) mutants were each hybridized to their parental amphotericin B-sensitive (AMBS) V79 cells. All the hybrids derived from AMBR/AMBS fusions were as sensitive to polyene antibiotics (amphotericin B, filipin, and pimaricin) as AMBS/AMBS hybrids. The AMBR/AMBS hybrids were found to contain cholesterol per phospholipids that is comparable to those in AMBS or AMBS/AMBS. The analysis of hybrids formed between mutant and wild-type cells thus indicated that resistance to amphotericin B is a recessive marker, and that the cellular level of cholesterol is compensated in the AMBS/AMBR hybrids. Hybrids of AMBR and AMBR cells were all resistant, so that the three AMBR mutants all fell into a single complementation group.  相似文献   
54.
We recently reported that an amide bond is unexpectedly formed by an acyl-CoA synthetase (which catalyzes the formation of a carbon-sulfur bond) when a suitable acid and l-cysteine are used as substrates. DltA, which is homologous to the adenylation domain of nonribosomal peptide synthetase, belongs to the same superfamily of adenylate-forming enzymes, which includes many kinds of enzymes, including the acyl-CoA synthetases. Here, we demonstrate that DltA synthesizes not only N-(d-alanyl)-l-cysteine (a dipeptide) but also various oligopeptides. We propose that this enzyme catalyzes peptide synthesis by the following unprecedented mechanism: (i) the formation of S-acyl-l-cysteine as an intermediate via its “enzymatic activity” and (ii) subsequent “chemicalSN acyl transfer in the intermediate, resulting in peptide formation. Step ii is identical to the corresponding reaction in native chemical ligation, a method of chemical peptide synthesis, whereas step i is not. To the best of our knowledge, our discovery of this peptide synthesis mechanism involving an enzymatic reaction and a subsequent chemical reaction is the first such one to be reported. This new process yields peptides without the use of a thioesterified fragment, which is required in native chemical ligation. Together with these findings, the same mechanism-dependent formation of N-acyl compounds by other members of the above-mentioned superfamily demonstrated that all members most likely form peptide/amide compounds by using this novel mechanism. Each member enzyme acts on a specific substrate; thus, not only the corresponding peptides but also new types of amide compounds can be formed.  相似文献   
55.
Thirty-six mutants of fd, a virus that infects but does not kill Escherichia coli, were isolated; 35 mutants were categorized into six complementation groups. Abortive infection with mutants in genes 1, 3, 4, 5, and 6, but not in gene 2, produced a cessation of host cell growth, generally linked to low burst size and to the formation of aberrant intracytoplasmic membranous structures. The membranous structure was studied during infection with various phage and hosts. Appearance of the membranous structure was linked specifically to incomplete phage maturation at the cell membrane, rather than solely to the inhibition of host cell growth or to infection with mutant phage, since (i) in one host, cell growth was inhibited, but no membranous structure developed; and (ii) when antibody against virus was added to cells infected with wild-type phage, phage extrusion was inhibited, cell growth stopped, and the membranous structure once again developed.  相似文献   
56.
Summary PSK, a protein-bound polysaccharide, has been widely used for cancer immunotherapy in Japan. However, the mechanism of its immunomodulatory effect has not been fully clarified. In the present study the in vitro effect of PSK on the lymphocytes of patients with gastric cancer was studied. Culturing lymphocytes with PSK at 5–100 µg/ml increased the level of DNA synthesis, and augmented the cytotoxicities against K562 and KATO-3. Flow-cytometric analysis also showed an increase in the proportion of interleukin-2 (IL-2)-receptor-positive cells after the lymphocytes were cultured with PSK. However the cytotoxicity of cells cultured with PSK was not augmented by the addition of recombinant interferon (rIFN) and rIL-2. Further experiments using fractionated PSK showed that its biological action is present mainly in fractions having molecular masses >105Da. However, these immunomodulations were not seen in all patients. These results suggest that the susceptibility of lymphocytes to PSK may be different in each patients, and that the immunomodulation by PSK may be mediated by mechanisms independent of IFN and IL-2.  相似文献   
57.
Summary The reaction conditions for the enzymatic production ofp-aminobenzoic acid were optimized, using a nitrilase in cells ofRhodococcus rhodochrous J1. The highest accumulation, 110 gp-aminobenzoic acid/liter of reaction mixture, was attained fromp-aminobenzonitrile, with a conversion yield of 100%.  相似文献   
58.
Three cysteine residues, which are completely conserved among alpha-subunits in all nitrile hydratases, are thought to be the ligands of a metal ion in the catalytic center of this enzyme. These cysteine residues (i.e. alpha C102, alpha C105 and alpha C107) in the high-molecular-mass nitrile hydratase (H-NHase) of Rhodococcus rhodochrous J1 were replaced with alanine by site-directed mutagenesis using the R. rhodochrous ATCC12674 host-vector system, and the resultant transformants were investigated. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) for the cell-free extracts of each mutant transformant revealed that four mutant transformants (i.e. alpha C105A, alpha C107A, alpha C102A/C105A and alpha C105A/C107A) showed predominant alpha- and beta-subunit protein bands with a mobility identical to those of the native H-NHase, while three mutant transformants (i.e. alpha C102A, alpha C102A/C107A and alpha C102A/C105A/C107A) did not produce the corresponding proteins. The purified former four mutant enzymes showed neither enzymatic activity nor the maximum absorption at 410 nm which was detected in the wild type H-NHase. They also did not contain cobalt ions. Based upon these findings, these three cysteine residues were found to be essential for the active expression of H-NHase.  相似文献   
59.
L-threo-3-Hydroxyaspartate dehydratase (L-threo-3-hydroxyaspartate hydro-lyase), which exhibited specificity for L-threo-3-hydroxyaspartate (K(m)=0.74 mM, V(max)=37.5 micromol min(-1) (mg protein)(-1)) but not for D-threo or D, L-erythro-3-hydroxyaspartate, was purified from a cell-free extract of Pseudomonas sp. T62. The activity of the enzyme was inhibited by hydroxylamine and EDTA, which suggests that pyridoxal 5'-phosphate and divalent cations participate in the enzyme reaction. The NH(2)-terminal amino acid sequence showed significant similarity to the Saccharomyces cerevisiae YKL218c gene product, a hypothetical threonine dehydratase. However, the purified enzyme showed no threonine dehydratase activity.  相似文献   
60.
Microbial lactonohydrolases (intramolecular ester bond-hydrolyzing enzymes) with unique properties were found. The lactonohydrolase fromFusarium oxysporum catalyzes enantioselective hydrolysis of aldonate lactones andd-pantoyl lactone (d-PL). This enzyme is useful for the large-scale optical resolution of racemic PL. TheAgrobacterium tumefaciens enzyme catalyzes asymmetric hydrolysis of PL, but the stereospecificity is opposite to that of theFusarium enzyme. Dihydrocoumarin hydrolase (DHase) fromAcinetobacter calcoaceticus is a bifunctional enzyme, which catalyzes not only hydrolysis of aromatic lactones but also bromination of monochlorodimedon in the presence of H2O2 and dihydrocoumarin. DHase also hydrolyzes several linear esters, and is useful for enantioselective hydrolysis of methyldl-β-acetylthioisobutyrate and regioselective hydrolysis of methyl cetraxate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号