首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   532篇
  免费   82篇
  国内免费   1篇
  2024年   1篇
  2023年   2篇
  2022年   5篇
  2021年   7篇
  2020年   4篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   9篇
  2015年   27篇
  2014年   24篇
  2013年   23篇
  2012年   30篇
  2011年   40篇
  2010年   20篇
  2009年   15篇
  2008年   38篇
  2007年   32篇
  2006年   27篇
  2005年   39篇
  2004年   33篇
  2003年   14篇
  2002年   18篇
  2001年   25篇
  2000年   17篇
  1999年   16篇
  1998年   25篇
  1997年   10篇
  1996年   6篇
  1995年   4篇
  1994年   8篇
  1993年   8篇
  1992年   6篇
  1991年   10篇
  1990年   11篇
  1989年   14篇
  1988年   10篇
  1987年   6篇
  1986年   5篇
  1985年   3篇
  1984年   2篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   3篇
  1975年   2篇
排序方式: 共有615条查询结果,搜索用时 109 毫秒
81.
A random library of Escherichia coli MG1655 genomic fragments fused to a promoterless green fluorescent protein (GFP) gene was constructed and screened by differential fluorescence induction for promoters that are induced after exposure to a sublethal high hydrostatic pressure stress. This screening yielded three promoters of genes belonging to the heat shock regulon (dnaK, lon, clpPX), suggesting a role for heat shock proteins in protection against, and/or repair of, damage caused by high pressure. Several further observations provide additional support for this hypothesis: (i) the expression of rpoH, encoding the heat shock-specific sigma factor σ32, was also induced by high pressure; (ii) heat shock rendered E. coli significantly more resistant to subsequent high-pressure inactivation, and this heat shock-induced pressure resistance followed the same time course as the induction of heat shock genes; (iii) basal expression levels of GFP from heat shock promoters, and expression of several heat shock proteins as determined by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins extracted from pulse-labeled cells, was increased in three previously isolated pressure-resistant mutants of E. coli compared to wild-type levels.  相似文献   
82.
83.
84.
We have studied the inactivation of six gram-negative bacteria (Escherichia coli, Pseudomonas fluorescens, Salmonella enterica serovar Typhimurium, Salmonella enteritidis, Shigella sonnei, and Shigella flexneri) by high hydrostatic pressure treatment in the presence of hen egg-white lysozyme, partially or completely denatured lysozyme, or a synthetic cationic peptide derived from either hen egg white or coliphage T4 lysozyme. None of these compounds had a bactericidal or bacteriostatic effect on any of the tested bacteria at atmospheric pressure. Under high pressure, all bacteria except both Salmonella species showed higher inactivation in the presence of 100 μg of lysozyme/ml than without this additive, indicating that pressure sensitized the bacteria to lysozyme. This extra inactivation by lysozyme was accompanied by the formation of spheroplasts. Complete knockout of the muramidase enzymatic activity of lysozyme by heat treatment fully eliminated its bactericidal effect under pressure, but partially denatured lysozyme was still active against some bacteria. Contrary to some recent reports, these results indicate that enzymatic activity is indispensable for the antimicrobial activity of lysozyme. However, partial heat denaturation extended the activity spectrum of lysozyme under pressure to serovar Typhimurium, suggesting enhanced uptake of partially denatured lysozyme through the serovar Typhimurium outer membrane. All test bacteria were sensitized by high pressure to a peptide corresponding to amino acid residues 96 to 116 of hen egg white, and all except E. coli and P. fluorescens were sensitized by high pressure to a peptide corresponding to amino acid residues 143 to 155 of T4 lysozyme. Since they are not enzymatically active, these peptides probably have a different mechanism of action than all lysozyme polypeptides.  相似文献   
85.
Zinc supplementation increases bone alkaline phosphatase in healthy men.   总被引:4,自引:0,他引:4  
Zinc takes part in the metabolism of bone as a constituent of the matrix and as an activator of several metallo-enzymes. Animal in vitro and in vivo studies strongly suggest that zinc supplementation could stimulate bone formation and inhibit bone resorption but data in humans remain rare. The biological effects of 50 mg zinc given orally as gluconate in 20 healthy male volunteers were investigated in a 12 weeks double-blind placebo-controlled randomized trial. To investigate bone turnover, total alkaline phosphatases activity (ALP), bone specific alkaline phosphatase activity (BAPE) and BAP mass (BAP-M) concentration were measured as parameters of bone formation while urine calcium and C-terminal collagen peptide were determined as parameters of bone resorption. Samples were obtained in fasting subjects at baseline and after 6 and 12 weeks. In zinc treated subjects, a significant increase was observed at least after 12 weeks in total ALP (p < 0.01), BAP-M (p < 0.05) and BAP-E (p < 0.02). These parameters did not significantly change in the placebo group. Urine zinc/creatinine ratio significantly increased after 6 (p < 0.03) and 12 weeks (p < 0.04) in the zinc-treated group and was significantly different from the placebo group (p < 0.002). There was no significant effect of zinc supplementation on parameters of bone resorption. In conclusion, zinc supplementation at supraphysiological doses increased parameters of bone formation in healthy men while parameters of bone resorption remained unchanged.  相似文献   
86.
87.
88.
Alternating cycles of exposure to high pressure and outgrowth of surviving populations were used to select for highly pressure-resistant mutants of Escherichia coli MG1655. Three barotolerant mutants (LMM1010, LMM1020, and LMM1030) were isolated independently by using outgrowth temperatures of 30, 37, and 42 degrees C, respectively. Survival of these mutants after pressure treatment for 15 min at ambient temperature was 40 to 85% at 220 MPa and 0.5 to 1.5% at 800 MPa, while survival of the parent strain, MG1655, decreased from 15% at 220 MPa to 2 x 10(-8)% at 700 MPa. Heat resistance of mutants LMM1020 and LMM1030 was also altered, as evident by higher D values at 58 and 60 degrees C and reduced z values compared to those for the parent strain. D and z values for mutant LMM1010 were not significantly different from those for the parent strain. Pressure sensitivity of the mutants increased from 10 to 50 degrees C, as opposed to the parent strain, which showed a minimum around 40 degrees C. The ability of the mutants to grow at moderately elevated pressure (50 MPa) was reduced at temperatures above 37 degrees C, indicating that resistance to pressure inactivation is unrelated to barotolerant growth. The development of high levels of barotolerance as demonstrated in this work should cause concern about the safety of high-pressure food processing.  相似文献   
89.
Phylogenetic analysis of the superfamily of D-2-hydroxyacid dehydrogenases identified the previously unrecognized cluster of glyoxylate/hydroxypyruvate reductases (GHPR). Based on the genome sequence of Rhizobium etli, the nodulating endosymbiont of the common bean plant, we predicted a putative 3-phosphoglycerate dehydrogenase to exhibit GHPR activity instead. The protein was overexpressed and purified. The enzyme is homodimeric under native conditions and is indeed capable of reducing both glyoxylate and hydroxypyruvate. Other substrates are phenylpyruvate and ketobutyrate. The highest activity was observed with glyoxylate and phenylpyruvate, both having approximately the same kcat/Km ratio. This kind of substrate specificity has not been reported previously for a GHPR. The optimal pH for the reduction of phenylpyruvate to phenyllactate is pH 7. These data lend support to the idea of predicting enzymatic substrate specificity based on phylogenetic clustering.  相似文献   
90.
Cell-based therapies are used to treat bone defects. We recently described that human multipotent adipose-derived stem (hMADS) cells, which exhibit a normal karyotype, self renewal, and the maintenance of their differentiation properties, are able to differentiate into different lineages. Herein, we show that hMADS cells can differentiate into osteocyte-like cells. In the presence of a low amount of serum and EGF, hMADS cells express specific molecular markers, among which alkaline phosphatase, CBFA-1, osteocalcin, DMP1, PHEX, and podoplanin and develop functional gap-junctions. When loaded on a hardening injectable bone substitute (HIBS) biomaterial and injected subcutaneously into nude mice, hMADS cells develop mineralized woven bone 4 weeks after implantation. Thus hMADS cells represent a valuable tool for pharmacological and biological studies of osteoblast differentiation in vitro and bone development in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号