首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220篇
  免费   6篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2018年   6篇
  2017年   3篇
  2016年   9篇
  2015年   17篇
  2014年   6篇
  2013年   27篇
  2012年   23篇
  2011年   17篇
  2010年   14篇
  2009年   6篇
  2008年   10篇
  2007年   14篇
  2006年   14篇
  2005年   9篇
  2004年   9篇
  2003年   9篇
  2002年   10篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1985年   1篇
  1984年   4篇
  1982年   1篇
排序方式: 共有226条查询结果,搜索用时 15 毫秒
61.

Background

Both obstructive sleep apnea (OSA) and a novel lipocalin, neutrophil gelatinase associated lipocalin (Ngal), have been reported to be closely linked with cardiovascular disease and loss of kidney function through chronic inflammation. However, the relationship between OSA and Ngal has never been investigated.

Objectives

To evaluate the relationship between Ngal and OSA in clinical practice.

Methods

In 102 patients, polysomnography was performed to diagnose OSA and plasma Ngal levels were measured. The correlations between Ngal levels and OSA severity and other clinical variables were evaluated. Of the 46 patients who began treatment with continuous positive airway pressure (CPAP), Ngal levels were reevaluated after three months of treatment in 25 patients.

Results

The Ngal level correlated significantly with OSA severity as determined by the apnea hypopnea index (r = 0.24, p = 0.01) and 4% oxygen desaturation index (ODI) (r = 0.26, p = 0.01). Multiple regression analysis showed that the Ngal level was associated with 4%ODI independently of other clinical variables. Compliance was good in 13 of the 25 patients who used CPAP. Although the OSA (4%ODI: 33.1±16.7 to 1.1±1.9/h, p<0.01) had significantly improved in those with good compliance, the Ngal levels were not significantly changed (60.5±18.1 before CPAP vs 64.2±13.9 ng/ml after CPAP, p = 0.27).

Conclusions

Plasma Ngal levels were positively associated with the severity of OSA. However, the contribution rate of OSA to systemic Ngal secretion was small and changes in Ngal levels appeared to be influenced largely by other confounding factors. Therefore, it does not seem reasonable to use the Ngal level as a specific biomarker of OSA in clinical practice.  相似文献   
62.

Background

Airway eosinophilia is a predictor of steroid responsiveness in steroid-naïve asthma. However, the relationship between airway eosinophilia and the expression of FK506-binding protein 51 (FKBP51), a glucocorticoid receptor co-chaperone that plays a role in steroid insensitivity in asthma, remains unknown.

Objective

To evaluate the relationship between eosinophilic inflammation and FKBP51 expression in sputum cells in asthma.

Methods

The FKBP51 mRNA levels in sputum cells from steroid-naïve patients with asthma (n = 31) and stable asthmatic patients on inhaled corticosteroid (ICS) (n = 28) were cross-sectionally examined using real-time PCR. Associations between FKBP51 levels and clinical indices were analyzed.

Results

In steroid-naïve patients, the FKBP51 levels were negatively correlated with eosinophil proportions in blood (r = −0.52) and sputum (r = −0.57), and exhaled nitric oxide levels (r = −0.42) (all p<0.05). No such associations were observed in patients on ICS. In steroid-naïve patients, improvement in forced expiratory volume in one second after ICS initiation was correlated with baseline eosinophil proportions in blood (r = 0.74) and sputum (r = 0.76) and negatively correlated with FKBP51 levels (r = −0.73) (all p<0.0001) (n = 20). Lastly, the FKBP51 levels were the lowest in steroid-naïve asthmatic patients, followed by mild to moderate persistent asthmatic patients on ICS, and the highest in severe persistent asthmatic patients on ICS (p<0.0001).

Conclusions

Lower FKBP51 expression in sputum cells may reflect eosinophilic inflammation and glucocorticoid responsiveness in steroid-naïve asthmatic patients.  相似文献   
63.

Background/Objective

Gene-gene interactions in the reverse cholesterol transport system for high-density lipoprotein-cholesterol (HDL-C) are poorly understood. The present study observed gene-gene combination effect and interactions between single nucleotide polymorphisms (SNPs) in ABCA1, APOA1, SR-B1, and CETP in serum HDL-C from a cross-sectional study in the Japanese population.

Methods

The study population comprised 1,535 men and 1,515 women aged 35–69 years who were enrolled in the Japan Multi-Institutional Collaborative Cohort (J-MICC) Study. We selected 13 SNPs in the ABCA1, APOA1, CETP, and SR-B1 genes in the reverse cholesterol transport system. The effects of genetic and environmental factors were assessed using general linear and logistic regression models after adjusting for age, sex, and region.

Principal Findings

Alcohol consumption and daily activity were positively associated with HDL-C levels, whereas smoking had a negative relationship. The T allele of CETP, rs3764261, was correlated with higher HDL-C levels and had the highest coefficient (2.93 mg/dL/allele) among the 13 SNPs, which was statistically significant after applying the Bonferroni correction (p<0.001). Gene-gene combination analysis revealed that CETP rs3764261 was associated with high HDL-C levels with any combination of SNPs from ABCA1, APOA1, and SR-B1, although no gene-gene interaction was apparent. An increasing trend for serum HDL-C was also observed with an increasing number of alleles (p<0.001).

Conclusions

The present study identified a multiplier effect from a polymorphism in CETP with ABCA1, APOA1, and SR-B1, as well as a dose-dependence according to the number of alleles present.  相似文献   
64.
Four types of amino acid related compounds were examined on their plant growth-regulating activity. These compounds were N-acylamino acids (N-acyl), N-alkylamino acids (N-alkyl), amino acid higher alkyl esters (ester) and amino acid higher alkyl amides (amide). Every compound, when the number of carbon atoms of the acyl or alkyl radical was 10 to 12, was most effective in inhibiting the root and shoot elongation of rice plant (Oryza sativa L.) in Petri dish. Ester and amide were much more effective than N-acyl and N-alkyl. Ester and amide also showed herbicidal activity against barnyardgrass (Echinochloa crusgalli) grown in pot filled with paddy soil and irrigated, especially, lauryl dl-valinate-HCl being most effective.  相似文献   
65.
Twenty six juvenile hormone analogs with various molecular chain length were prepared and bioassayed using allatectomized 4th instar larvae of Bombyx mori L. Among methyl or ethyl esters, the chain length of 17 atoms is the optimal for the high juvenile hormone activity on the silkworm.  相似文献   
66.
Interleukin-17 (IL-17) is a pro-inflammatory cytokine produced primarily by a subset of CD4+ T cells, called Th17 cells, that is involved in host defense, inflammation and autoimmune disorders. The two most structurally related IL-17 family members, IL-17A and IL-17F, form homodimeric (IL-17A/A, IL-17F/F) and heterodimeric (IL-17A/F) complexes. Although the biological significance of IL-17A and IL-17F have been investigated using respective antibodies or gene knockout mice, the functional study of IL-17A/F heterodimeric form has been hampered by the lack of an inhibitory tool specific to IL-17A/F. In this study, we aimed to develop an RNA aptamer that specifically inhibits IL-17A/F. Aptamers are short single-stranded nucleic acid sequences that are selected in vitro based on their high affinity to a target molecule. One selected aptamer against human IL-17A/F, AptAF42, was isolated by repeated cycles of selection and counterselection against heterodimeric and homodimeric complexes, respectively. Thus, AptAF42 bound IL-17A/F but not IL-17A/A or IL-17F/F. The optimized derivative, AptAF42dope1, blocked the binding of IL-17A/F, but not of IL-17A/A or IL-17F/F, to the IL-17 receptor in the surface plasmon resonance assay in vitro. Consistently, AptAF42dope1 blocked cytokine GRO-α production induced by IL-17A/F, but not by IL-17A/A or IL-17F/F, in human cells. An RNA footprinting assay using ribonucleases against AptAF42dope1 in the presence or absence of IL-17A/F revealed that part of the predicted secondary structure fluctuates between alternate forms and that AptAF42dope1 is globally protected from ribonuclease cleavage by IL-17A/F. These results suggest that the selected aptamer recognizes a global conformation specified by the heterodimeric surface of IL-17A/F.  相似文献   
67.
Dendritic/tumor fusion cell (FC) vaccine is an effective approach for various types of cancer but has not yet been standardized. Antitumor activity can be modulated by different mechanisms such as dendritic cell (DC) maturation state. This study addressed optimal strategies for FC preparations to enhance Ag-specific CTL activity. We have created three types of FC preparations by alternating fusion cell partners: 1) immature DCs fused with autologous colorectal carcinoma cells (Imm-FCs); 2) Imm-FCs followed by stimulation with penicillin-inactivated Streptococcus pyogenes (OK-432) (Imm-FCs/OK); and 3) OK-432-stimulated DCs directly fused to autologous colorectal carcinoma cells (OK-FCs). Both OK-FCs and Imm-FCs/OK coexpressed the CEA, MUC1, and significantly higher levels of CD86, CD83, and IL-12 than those obtained with Imm-FCs. Short-term culture of fusion cell preparations promoted the fusion efficiency. Interestingly, OK-FCs were more efficient in stimulating CD4(+) and CD8(+) T cells capable of high levels of IFN-gamma production and cytolysis of autologous tumor or semiallogeneic targets. Moreover, OK-FCs are more effective inducer of CTL activation compared with Imm-FCs/OK on a per fusion cell basis. The pentameric assay confirmed that CEA- and MUC1-specific CTL was induced simultaneously by OK-FCs at high frequency. Furthermore, the cryopreserved OK-FCs retained stimulatory capacity for inducing antitumor immunity. These results suggest that OK-432 promotes fusion efficiency and induction of Ag-specific CTL by fusion cells. We conclude that DCs fused after stimulation by OK-432 may have the potential applicability to the field of antitumor immunotherapy and may provide a platform for adoptive immunotherapy in the clinical setting.  相似文献   
68.
The 70-kDa heat shock protein (Hsp70) is up-regulated in a wide variety of tumor cell types and contributes to the resistance of these cells to the induction of cell death by anticancer drugs. Hsp70 binding protein 1 (HspBP1) modulates the activity of Hsp70 but its biological significance has remained unclear. We have now examined whether HspBP1 might interfere with the prosurvival function of Hsp70, which is mediated, at least in part, by inhibition of the death-associated permeabilization of lysosomal membranes. HspBP1 was found to be expressed at a higher level than Hsp70 in all normal and tumor cell types examined. Tumor cells with a high HspBP1/Hsp70 molar ratio were more susceptible to anticancer drugs than were those with a low ratio. Ectopic expression of HspBP1 enhanced this effect of anticancer drugs in a manner that was both dependent on the ability of HspBP1 to bind to Hsp70 and sensitive to the induction of Hsp70 by mild heat shock. Furthermore, anticancer drugs up-regulated HspBP1 expression, whereas prevention of such up-regulation by RNA interference reduced the susceptibility of tumor cells to anticancer drugs. Overexpression of HspBP1 promoted the permeabilization of lysosomal membranes, the release of cathepsins from lysosomes into the cytosol, and the activation of caspase-3 induced by anticancer drugs. These results suggest that HspBP1, by antagonizing the prosurvival activity of Hsp70, sensitizes tumor cells to cathepsin-mediated cell death.  相似文献   
69.
This paper reports the temporal variation (2002–2004) in foliar δ13C values, which are indicative of long-term integrated photosynthetic and water use characteristics, of Siberian larch (Larix sibirica Ledeb.) trees in a montane forest at Mongonmorit, NE Mongolia. At the stand, the δ13C value for understory shaded leaves was more negative by 2‰ on average than that for sunlit leaves sampled concurrently from open and sun-exposed environments in a forest gap. The δ13C value of both sunlit and shaded leaves showed pronounced intra- but relatively small inter-seasonal variations. The δ13C value was more positive for juvenile than mature leaves. We conjecture that juvenile leaves may derive carbon reserves in woody tissues (e.g., stems). Regardless of leaf habitats, the δ13C value was also affected by insect herbivores occurred in mid summer of 2003, being more negative in newly emerging leaves from the twigs after defoliation than in non-defoliated mature leaves. This pattern seems to contrast with that for the juvenile leaves in the early growing season. We surmise that the newly emerging leaves used stored organic carbon that was depleted due to fractionation during remobilization and translocation for leaf regrowth. There was also intra- and inter-seasonal variation in the foliar N concentrations and C:N ratios. A good positive (negative) correlation between the foliar δ13C values and N concentrations (C:N ratios) was also observed for both sunlit and shaded leaves, suggesting that the relationship between water and nitrogen use is a crucial factor affecting the plant carbon–water relationship in this mid latitude forest with a cold semiarid climate. Our isotopic data demonstrate that the larches in NE Mongolia exhibits relatively higher water use efficiency with a distinct within-season variability.  相似文献   
70.
We investigated complex genomic rearrangements (CGRs) consisting of triplication copy-number variants (CNVs) that were accompanied by extended regions of copy-number-neutral absence of heterozygosity (AOH) in subjects with multiple congenital abnormalities. Molecular analyses provided observational evidence that in humans, post-zygotically generated CGRs can lead to regional uniparental disomy (UPD) due to template switches between homologs versus sister chromatids by using microhomology to prime DNA replication—a prediction of the replicative repair model, MMBIR. Our findings suggest that replication-based mechanisms might underlie the formation of diverse types of genomic alterations (CGRs and AOH) implicated in constitutional disorders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号