首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7325篇
  免费   662篇
  国内免费   1篇
  7988篇
  2024年   12篇
  2023年   41篇
  2022年   110篇
  2021年   204篇
  2020年   95篇
  2019年   119篇
  2018年   166篇
  2017年   134篇
  2016年   247篇
  2015年   468篇
  2014年   490篇
  2013年   480篇
  2012年   677篇
  2011年   645篇
  2010年   364篇
  2009年   309篇
  2008年   487篇
  2007年   462篇
  2006年   415篇
  2005年   384篇
  2004年   348篇
  2003年   360篇
  2002年   299篇
  2001年   55篇
  2000年   42篇
  1999年   78篇
  1998年   66篇
  1997年   46篇
  1996年   44篇
  1995年   34篇
  1994年   28篇
  1993年   31篇
  1992年   27篇
  1991年   21篇
  1990年   22篇
  1989年   10篇
  1988年   15篇
  1987年   11篇
  1986年   8篇
  1985年   14篇
  1984年   9篇
  1983年   6篇
  1982年   8篇
  1981年   7篇
  1980年   8篇
  1978年   8篇
  1977年   10篇
  1974年   6篇
  1970年   8篇
  1968年   6篇
排序方式: 共有7988条查询结果,搜索用时 15 毫秒
61.
Compound 1 has been shown to be a dual prenylation inhibitor with FPTase (IC50=2 nM) and GGPTase-I (IC50=95 nM). Analogues of 1, which replaced the cyanophenyl group with various biaryls, led to the discovery of highly potent dual FPTase/GGPTase-I inhibitors. 4-trifluoromethylphenyl, trifluoropentynyl, and trifluoropentyl were identified as good p-cyano replacements.  相似文献   
62.
Kweon DH  Chen Y  Zhang F  Poirier M  Kim CS  Shin YK 《Biochemistry》2002,41(17):5449-5452
Highly conserved soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins control membrane fusion at synapses. The target plasma membrane-associated SNARE proteins and the vesicle-associated SNARE protein assemble into a parallel four-helix bundle. Using a novel EPR approach, it is found that the SNARE four-helix bundles are interconnected via domain swapping that is achieved by substituting one of the two SNAP-25 helices with the identical helix from the second four-helical bundle. Domain swapping is likely to play a role in the multimerization of the SNARE complex that is required for successful membrane fusion. The new EPR application employed here should be useful to study other polymerizing proteins.  相似文献   
63.
The nitrogen-fixing symbiosis between Rhizobiaceae and legumes is one of the best-studied interactions established between prokaryotes and eukaryotes. The plant develops root nodules in which the bacteria are housed, and atmospheric nitrogen is fixed into ammonia by the rhizobia and made available to the plant in exchange for carbon compounds. It has been hypothesized that this symbiosis evolved from the more ancient arbuscular mycorrhizal (AM) symbiosis, in which the fungus associates with roots and aids the plant in the absorption of mineral nutrients, particularly phosphate. Support comes from several fronts: 1) legume mutants where Nod(-) and Myc(-) co-segregate, and 2) the fact that various early nodulin (ENOD) genes are expressed in legume AM. Both strongly argue for the idea that the signal transduction pathways between the two symbioses are conserved. We have analyzed the responses of four classes of non-nodulating Melilotus alba (white sweetclover) mutants to Glomus intraradices (the mycorrhizal symbiont) to investigate how Nod(-) mutations affect the establishment of this symbiosis. We also re-examined the root hair responses of the non-nodulating mutants to Sinorhizobium meliloti (the nitrogen-fixing symbiont). Of the four classes, several sweetclover sym mutants are both Nod(-) and Myc(-). In an attempt to decipher the relationship between nodulation and mycorrhiza formation, we also performed co-inoculation experiments with mutant rhizobia and Glomus intraradices on Medicago sativa, a close relative of M. alba. Even though sulfated Nod factor was supplied by some of the bacterial mutants, the fungus did not complement symbiotically defective rhizobia for nodulation.  相似文献   
64.
Long-lived Th2 memory in experimental allergic asthma   总被引:3,自引:0,他引:3  
Although life-long immunity against pathogens is beneficial, immunological memory responses directed against allergens are potentially harmful. Because there is a paucity of information about Th2 memory cells in allergic disease, we established a model of allergic asthma in BALB/c mice to explore the generation and maintenance of Th2 memory. We induced disease without the use of adjuvants, thus avoiding Ag depots, and found that unlike allergic asthma in mice immunized with adjuvant, immunizing with soluble and aerosol OVA resulted in pathological lung lesions resembling human disease. To test memory responses we allowed mice with acute disease to recover and then re-exposed them to aerosol OVA a second time. Over 400 days later these mice developed OVA-dependent eosinophilic lung inflammation, airway hyperresponsiveness, mucus hypersecretion, and IgE. Over 1 year after recuperating from acute disease, mice had persistent lymphocytic lung infiltrates, Ag-specific production of IL-4 and IL-5 from spleen and lung cells in vitro, and elevated IgG1. Moreover, when recuperated mice were briefly aerosol challenged, we detected early expression of Th2 cytokine RNA in lungs. Taken together, these data demonstrate the presence of long-lived Th2 memory cells in spleen and lungs involved in the generation of allergic asthma upon Ag re-exposure.  相似文献   
65.
Classical protein import, mediated by the binding of a classical nuclear localization signal (NLS) to the NLS receptor, karyopherin/importin alpha, is the most well studied nuclear transport process. Classical NLSs are either monopartite sequences that contain a single cluster of basic amino acids (Lys/Arg) or bipartite sequences that contain two clusters of basic residues separated by an unconserved linker region. We have created mutations in conserved residues in each of the three NLS-binding sites/regions in Saccharomyces cerevisiae karyopherin alpha (SRP1). For each mutant we have analyzed binding to both a monopartite and a bipartite NLS cargo in vitro. We have also expressed each karyopherin alpha mutant in vivo as the only cellular copy of the NLS receptor and examined the impact on cell growth and import of both monopartite and bipartite NLS-containing cargoes. Our results reveal the functional significance of specific residues within karyopherin alpha for NLS cargo binding. A karyopherin alpha variant with a mutation in the major NLS-binding site exhibits decreased binding to both monopartite and bipartite NLS cargoes, and this protein is not functional in vivo. However, we also find that a karyopherin alpha variant with a mutation in the minor NLS-binding site, which shows decreased binding only to bipartite NLS-containing cargoes, is also not functional in vivo. This suggests that the cell is dependent on the function of at least one bipartite NLS cargo that is imported into the nucleus by karyopherin alpha. Our experiments also reveal functional importance for the linker-binding region. This study provides insight into how changes in binding to cellular NLS sequences could impact cellular function. In addition, this work has led to the creation of conditional alleles of karyopherin alpha with well characterized defects in NLS binding that will be useful for identifying and characterizing novel NLS cargoes.  相似文献   
66.

Background and Aims

Plants display a wide range of traits that allow them to use animals for vital tasks. To attract and reward aggressive ants that protect developing leaves and flowers from consumers, many plants bear extrafloral nectaries (EFNs). EFNs are exceptionally diverse in morphology and locations on a plant. In this study the evolution of EFN diversity is explored by focusing on the legume genus Senna, in which EFNs underwent remarkable morphological diversification and occur in over 80 % of the approx. 350 species.

Methods

EFN diversity in location, morphology and plant ontogeny was characterized in wild and cultivated plants, using scanning electron microscopy and microtome sectioning. From these data EFN evolution was reconstructed in a phylogenetic framework comprising 83 Senna species.

Key Results

Two distinct kinds of EFNs exist in two unrelated clades within Senna. ‘Individualized’ EFNs (iEFNs), located on the compound leaves and sometimes at the base of pedicels, display a conspicuous, gland-like nectary structure, are highly diverse in shape and characterize the species-rich EFN clade. Previously overlooked ‘non-individualized’ EFNs (non-iEFNs) embedded within stipules, bracts, and sepals are cryptic and may represent a new synapomorphy for clade II. Leaves bear EFNs consistently throughout plant ontogeny. In one species, however, early seedlings develop iEFNs between the first pair of leaflets, but later leaves produce them at the leaf base. This ontogenetic shift reflects our inferred diversification history of iEFN location: ancestral leaves bore EFNs between the first pair of leaflets, while leaves derived from them bore EFNs either between multiple pairs of leaflets or at the leaf base.

Conclusions

EFNs are more diverse than previously thought. EFN-bearing plant parts provide different opportunities for EFN presentation (i.e. location) and individualization (i.e. morphology), with implications for EFN morphological evolution, EFN–ant protective mutualisms and the evolutionary role of EFNs in plant diversification.  相似文献   
67.
68.
Hanna M  Ball LG  Tong AH  Boone C  Xiao W 《Mutation research》2007,625(1-2):164-176
POL32 encodes a non-essential subunit of Polδ and plays a role in Polδ processivity and DNA repair. In order to understand how Pol32 is involved in these processes, we performed extensive genetic analysis and demonstrated that POL32 is required for Polζ-mediated translesion synthesis, but not for Polη-mediated activity. Unlike Polζ, inactivation of Pol32 does not result in decreased spontaneous mutagenesis, nor does it limit genome instability in the absence of the error-free postreplication repair pathway. In contrast, inactivation of Pol32 results in an increased rate of replication slippage and recombination. A genome-wide synthetic lethal screen revealed that in the absence of Pol32, homologous recombination repair and cell cycle checkpoints play crucial roles in maintaining cell survival and growth. These results are consistent with a model in which Pol32 functions as a coupling factor to facilitate a switch from replication to translesion synthesis when Polδ encounters replication-blocking lesions. When Pol32 is absent, the S-phase checkpoint complex Mrc1–Tof1 becomes crucial to stabilize the stalled replication fork and recruit Top3 and Sgs1. Lack of any of the above activities will cause double strand breaks at or near the replication fork that require recombination as well as Rad9 for cell survival.  相似文献   
69.
A novel marine actinomycete strain NPS8920 produces a new class of 4-oxazolidinone antibiotics lipoxazolidinone A, B and C. Lipoxazolidinone A possesses good potency (1-2 microg/mL) against drug-resistant pathogens methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE). Strain NPS8920 exhibits different morphologies in both agar and submerged cultures. The ability of strain NPS8920 to sporulate on saline-based agar media but not on deionized water-based agar medium supported that strain NPS8920 is a marine actinomycete. While strain NPS8920 does not require seawater for growth, the production of lipoxazolidinones by strain NPS8920 can only be detected in the seawater-based media. The optimal production of lipoxazolidinones was observed in the natural seawater-based medium. Strain NPS8920 produced 10-20% of lipoxazolidinones in the synthetic sea salt Instant Ocean-based medium and no production in the sodium chloride-based and deionized water-based media.  相似文献   
70.
Parodon and Apareiodon lack sufficiently consistent morphological traits to be considered a monophyletic group in Parodontidae. Species within this family are either sex-homomorphic or sex-heteromorphic (i.e., lacking a differentiated sex chromosome system, ZZ/ZW or ZZ/ZW(1)W(2)). In this study, a DNA fragment from the heterochromatin segment of the W chromosome of Apareiodon ibitiensis (named WAp) was microdissected and used for in situ mapping of nine Parodontidae species. The species were also characterized using a satellite DNA probe (pPh2004). The species were phylogenetically clustered according to 17 characters, which were examined by both classical and molecular cytogenetic techniques. Given the present results, the single ZZ/ZW sex chromosome system seems to have been derived from a paracentric inversion of a terminal WAp site onto the proximal regions of the short arms of a metacentric chromosome pair, followed by WAp site amplification. We reason that these events restrained recombination and favored differentiation of the W chromosome in some species. Moreover, co-hybridization experiments targeting the WAp and pPh2004 repetitive DNA sites of A. affinis suggest that the ZZ/ZW(1)W(2) sex chromosomes of this species may have arisen from a translocation between the proto-sex chromosome and an autosome. Our phylogenetic analysis corroborates the hypothesis of sex chromosome differentiation and establishes groups of closely related species. The phylogenetic reorganization in response to these new data supports the presence of internal monophyletic groups within Parodontidae.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号