首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7344篇
  免费   640篇
  国内免费   1篇
  7985篇
  2024年   11篇
  2023年   41篇
  2022年   109篇
  2021年   206篇
  2020年   92篇
  2019年   118篇
  2018年   159篇
  2017年   133篇
  2016年   245篇
  2015年   459篇
  2014年   488篇
  2013年   484篇
  2012年   676篇
  2011年   656篇
  2010年   373篇
  2009年   316篇
  2008年   479篇
  2007年   455篇
  2006年   409篇
  2005年   376篇
  2004年   344篇
  2003年   356篇
  2002年   294篇
  2001年   57篇
  2000年   45篇
  1999年   76篇
  1998年   67篇
  1997年   47篇
  1996年   44篇
  1995年   39篇
  1994年   26篇
  1993年   33篇
  1992年   31篇
  1991年   21篇
  1990年   25篇
  1989年   16篇
  1988年   12篇
  1987年   14篇
  1986年   9篇
  1985年   12篇
  1984年   14篇
  1981年   12篇
  1980年   9篇
  1979年   5篇
  1978年   9篇
  1977年   5篇
  1975年   5篇
  1974年   5篇
  1972年   6篇
  1967年   7篇
排序方式: 共有7985条查询结果,搜索用时 15 毫秒
141.
The Salmoniform whole‐genome duplication is hypothesized to have facilitated the evolution of anadromy, but little is known about the contribution of paralogs from this event to the physiological performance traits required for anadromy, such as salinity tolerance. Here, we determined when two candidate, salinity‐responsive paralogs of the Na+, K+ ATPase α subunit (α1a and α1b) evolved and studied their evolutionary trajectories and tissue‐specific expression patterns. We found that these paralogs arose during a small‐scale duplication event prior to the Salmoniform, but after the teleost, whole‐genome duplication. The ‘freshwater paralog’ (α1a) is primarily expressed in the gills of Salmoniformes and an unduplicated freshwater sister species (Esox lucius) and experienced positive selection in the freshwater ancestor of Salmoniformes and Esociformes. Contrary to our predictions, the ‘saltwater paralog’ (α1b), which is more widely expressed than α1a, did not experience positive selection during the evolution of anadromy in the Coregoninae and Salmonine. To determine whether parallel mutations in Na+, K+ ATPase α1 may contribute to salinity tolerance in other fishes, we studied independently evolved salinity‐responsive Na+, K+ ATPase α1 paralogs in Anabas testudineus and Oreochromis mossambicus. We found that a quarter of the mutations occurring between salmonid α1a and α1b in functionally important sites also evolved in parallel in at least one of these species. Together, these data argue that paralogs contributing to salinity tolerance evolved prior to the Salmoniform whole‐genome duplication and that strong selection and/or functional constraints have led to parallel evolution in salinity‐responsive Na+, K+ ATPase α1 paralogs in fishes.  相似文献   
142.
143.
Recent work has indicated that platelets, which are anucleate blood cells, significantly contribute to inflammatory disorders. Importantly, platelets also likely contribute to various inflammatory secondary disorders that are increasingly associated with Human Immunodeficiency Virus Type-1 (HIV) infection including neurological impairments and cardiovascular complications. Indeed, HIV infection is often associated with increased levels of platelet activators. Additionally, cocaine, a drug commonly abused by HIV-infected individuals, leads to increased platelet activation in humans. Considering that orchestrated signaling mechanisms are essential for platelet activation, and that nuclear factor-kappa B (NF-κB) inhibitors can alter platelet function, the role of NF-κB signaling in platelet activation during HIV infection warrants further investigation. Here we tested the hypothesis that inhibitory kappa B kinase complex (IKK) activation would be central for platelet activation induced by HIV and cocaine. Whole blood from HIV-positive and HIV-negative individuals, with or without cocaine abuse was used to assess platelet activation via flow cytometry whereas IKK activation was analyzed by performing immunoblotting and in vitro kinase assays. We demonstrate that increased platelet activation in HIV patients, as measured by CD62P expression, is not altered with reported cocaine use. Furthermore, cocaine and HIV do not activate platelets in whole blood when treated ex vivo. Finally, HIV-induced platelet activation does not involve the NF-κB signaling intermediate, IKKβ. Platelet activation in HIV patients is not altered with cocaine abuse. These results support the notion that non-IKK targeting approaches will be better suited for the treatment of HIV-associated inflammatory disorders.  相似文献   
144.
35S-labeled derivatives of the insecticides nodulisporic acid and ivermectin were synthesized and demonstrated to bind with high affinity to a population of receptors in Drosophila head membranes that were previously shown to be associated with a glutamate-gated chloride channel. Nodulisporic acid binding was modeled as binding to a single population of receptors. Ivermectin binding was composed of at least two kinetically distinct receptor populations, only one of which was associated with nodulisporic acid binding. The binding of these two ligands was modulated by glutamate, ivermectin, and antagonists of invertebrate gamma-aminobutyric acid (GABA)ergic receptors. Because solubilized nodulisporic acid and ivermectin receptors comigrated as 230-kDa complexes by gel filtration, antisera specific for both the Drosophila glutamate-gated chloride channel subunit GluCl alpha (DmGluCl alpha) and the GABA-gated chloride channel subunit Rdl (DmRdl) proteins were generated and used to examine the possible coassembly of these two subunits within a single receptor complex. DmGluCl alpha antibodies immunoprecipitated all of the ivermectin and nodulisporic acid receptors solubilized by detergent from Drosophila head membranes. DmRdl antibodies also immunoprecipitated all solubilized nodulisporic receptors, but only approximately 70% of the ivermectin receptors. These data suggest that both DmGluCl alpha and DmRdl are components of nodulisporic acid and ivermectin receptors, and that there also exists a distinct class of ivermectin receptors that contains the DmGluCl alpha subunit but not the DmRdl subunit. This co-association of DmGluCl alpha and DmRdl represents the first biochemical and immunological evidence of coassembly of subunits from two different subclasses of ligand-gated ion channel subunits.  相似文献   
145.
Modo-UG is a class I gene located in the MHC of the marsupial Monodelphis domestica, the gray, short-tailed opossum. Modo-UG is expressed as three alternatively spliced mRNA forms, all of which encode a transmembrane form with a short cytoplasmic tail that lacks phosphorylation sites typically found in classical class I molecules. The three alternative mRNAs would encode a full-length form, an isoform lacking the α2 domain, and one lacking both α2 and α3 domains. Genotyping both captive-bred and wild M. domestica from different geographic regions revealed no variation in the residues that make up Modo-UG’s peptide-binding groove. Modo-UG’s low polymorphism is contrasting to that of a nearby class I locus, Modo-UA1, which has a highly polymorphic peptide-binding region. Absence of functional polymorphism in Modo-UG is therefore not a general feature of opossum class I genes but the result of negative selection. Modo-UG is the first MHC linked marsupial class I to be described that appears to clearly have nonclassical features.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   
146.
There are several reports indicating that nitric oxide (NO) plays a role in the kidney hyperfiltration seen in the early stages of diabetes mellitus (DM). Whole kidney GFR and single nephron GFR (SNGFR) have been reported to decrease after nitric oxide synthase (NOS) inhibition. To date, no direct, in vivo, quantitative NO measurements have been made within the kidney in any models of early diabetes. To assess the possible association of changes in tubular fluid nitric oxide concentrations (TF [NO]) with early diabetes, a specially modified NO electrode with a tip diameter of about 7 microm was used to measure NO in single tubules in seven rodent groups. In the Sprague-Dawley (SD) rat model, TF [NO] increased by 50% after streptozotocin (STZ) induced DM1. In the B6129G2/J mouse, control TF [NO] was more than twice the rat control value and fell by 50% after STZ treatment. In three other groups of mice-db/db (B6.Cg-m+/+Lepr(db)/J) Type II diabetic (DM2) mouse, db/m (its heterozygote), and the corresponding wild type (WT)-TF [NO] was also much higher than in the rat, and unlike the B6129G2/J STZ diabetic mouse, did not change after the onset of diabetes. Blood glucose concentrations were similar in the three diabetic groups. Accordingly, in different rodent models of diabetes, in vivo TF [NO], measured in real time, varies significantly in control animals and directionally in different models of DM1 and DM2.  相似文献   
147.
B and T lymphocyte attenuator (BTLA) was initially identified as expressed on Th1 cells and B cells, but recently reported to be expressed by macrophages, dendritic cells, and NK cells as well. To address this discrepancy we generated a panel of BTLA-specific mAbs and characterized BTLA expression under various activation conditions. We report the existence of three distinct BTLA alleles among 23 murine strains, differing both in Ig domain structure and cellular distribution of expression on lymphoid subsets. The BALB/c and MRL/lpr alleles differ at one amino acid residue, but C57BL/6 has nine additional differences and alters the predicted cysteine bonding pattern. The BALB/c BTLA allele is also expressed by B cells, T cells, and dendritic cells, but not macrophages or NK cells. However, C57BL/6 BTLA is expressed on CD11b+ macrophages and NK cells. Finally, in CD4+ T cells, BTLA is expressed most highly following Ag-specific induction of anergy in vivo, and unlike programmed death-1 and CTLA-4, not expressed by CD25+ regulatory T cells. These results clarify discrepancies regarding BTLA expression, suggest that structural and expression polymorphisms be considered when analyzing BTLA in various murine backgrounds, and indicate a possible role in anergic CD4+ T cells.  相似文献   
148.
Li Y  Fu L  Wong AM  Fan YH  Li MX  Bei JX  Jia WH  Zeng YX  Chan D  Cheung KM  Sham P  Chua D  Guan XY  Song YQ 《PloS one》2011,6(1):e14562
Nasopharyngeal carcinoma (NPC) is a malignancy of epithelial origin. The etiology of NPC is complex and includes multiple genetic and environmental factors. We employed case-control analysis to study the association of chromosome 6p regions with NPC. In total, 360 subjects and 360 healthy controls were included, and 233 single nucleotide polymorphisms (SNPs) on 6p were examined. Significant single-marker associations were found for SNPs rs2267633 (p = 4.49 × 10(-5)), rs2076483 (most significant, p = 3.36 × 10(-5)), and rs29230 (p=1.43 × 10(-4)). The highly associated genes were the gamma-amino butyric acid B receptor 1 (GABBR1), human leukocyte antigen (HLA-A), and HLA complex group 9 (HCG9). Haplotypic associations were found for haplotypes AAA (located within GABBR1, p-value = 6.46 × 10(-5)) and TT (located within HLA-A, p = 0.0014). Further investigation of the homozygous genotype frequencies between cases and controls suggested that micro-deletion regions occur in GABBR1 and neural precursor cell expressed developmentally down-regulated 9 (NEDD9). Quantitative real-time polymerase chain reaction (qPCR) using 11 pairs of NPC biopsy samples confirmed the significant decline in GABBR1 and NEDD9 mRNA expression in the cancer tissues compared to the adjacent non-tumor tissue (p<0.05). Our study demonstrates that multiple chromosome 6p susceptibility loci contribute to the risk of NPC, possibly though GABBR1 and NEDD9 loss of function.  相似文献   
149.
Normal enteric nervous system (ENS) development relies on numerous factors, including appropriate migration, proliferation, differentiation, and maturation of neural crest (NC) derivatives. Incomplete rostral to caudal migration of enteric neural crest-derived progenitors (ENPs) down the gut is at least partially responsible for the absence of enteric ganglia that is a hallmark feature of Hirschsprung disease (HSCR). The thought that ganglia proximal to aganglionosis are normal has guided surgical procedures for HSCR patients. However, chronic gastrointestinal dysfunction suffered by a subset of patients after surgery as well as studies in HSCR mouse models suggest that aberrant NC segregation and differentiation may be occurring in ganglionated regions of the intestine. Studies in mouse models that possess enteric ganglia throughout the length of the intestine (non-HSCR) have also found that certain genetic alterations affect neural crest lineage balance and interestingly many of these mutants also have functional gastrointestinal (GI) defects. It is possible that many GI disorders can be explained in part by imbalances in NC-derived lineages. Here we review studies evaluating ENS defects in HSCR and non-HSCR mouse models, concluding with clinical implications while highlighting areas requiring further study.  相似文献   
150.
Background aimsThe Quantum® Cell Expansion System (Quantum; Terumo BCT, Inc, Lakewood, CO, USA) is a novel hollow fiber-based device that automates and closes the cell culture process, reducing labor intensive tasks such as manual cell culture feeding and harvesting. The manual cell selection and expansion processes for the production of clinical-scale quantities of bone marrow-derived human mesenchymal stromal cells (BM-hMSCs) have been successfully translated onto the Quantum platform previously. The formerly static, manual, in vitro process performed primarily on tissue culture polystyrene substrates may raise the question of whether BM-hMSCs cultured on a hollow fiber platform yields comparable cell quality.MethodsA rigorous battery of assays was used to determine the genetic stability of BM-hMSCs selected and produced with the Quantum. In this study, genetic stability was determined by assessing spectral karyotype, micronucleus formation and tumorigenicity to resolve chromosomal aberrations in the stem cell population. Cell phenotype, adherent growth kinetics and tri-lineage differentiation were also evaluated. HMSC bone marrow aspirates, obtained from three approved donors, were expanded in parallel using T225 culture flasks and the Quantum.ResultsBM-hMSCs harvested from the Quantum demonstrated immunophenotype, morphology and tri-lineage differentiation capacity characteristics consistent with the International Society of Cell Therapy standard for hMSCs. Cell populations showed no malignant neoplastic formation in athymic mice 60 days post-transplant, no clonal chromosomal aberrations were observed and no DNA damage was found as measured by micronucleus formation.ConclusionsQuantum-produced BM-hMSCs are of comparable quality and demonstrate analogous genetic stability to BM-hMSCs cultured on tissue culture polystyrene substrates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号