首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7715篇
  免费   674篇
  国内免费   1篇
  8390篇
  2024年   13篇
  2023年   49篇
  2022年   120篇
  2021年   220篇
  2020年   98篇
  2019年   130篇
  2018年   179篇
  2017年   157篇
  2016年   271篇
  2015年   502篇
  2014年   531篇
  2013年   531篇
  2012年   737篇
  2011年   700篇
  2010年   404篇
  2009年   344篇
  2008年   525篇
  2007年   495篇
  2006年   439篇
  2005年   392篇
  2004年   354篇
  2003年   362篇
  2002年   295篇
  2001年   53篇
  2000年   35篇
  1999年   71篇
  1998年   65篇
  1997年   47篇
  1996年   42篇
  1995年   34篇
  1994年   23篇
  1993年   31篇
  1992年   22篇
  1991年   13篇
  1990年   19篇
  1989年   8篇
  1988年   9篇
  1987年   9篇
  1986年   4篇
  1985年   10篇
  1984年   8篇
  1982年   3篇
  1981年   6篇
  1980年   7篇
  1978年   4篇
  1977年   5篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1971年   2篇
排序方式: 共有8390条查询结果,搜索用时 9 毫秒
921.
Phospholipase D (PLD) hydrolyzes the phosphodiester bond of the predominant membrane phospholipid, phosphatidylcholine producing phosphatidic acid and free choline. This activity can participate in signal transduction pathways and impact on vesicle trafficking for secretion and endocytosis, as well as receptor signalling. Phospholipids can regulate PLD activity directly, through specific intermolecular interactions, or indirectly, through their effect on the localization or activity of PLD's protein effectors. This short review highlights these various phospholipid inputs into the regulation of PLD activity and also reviews potential roles for PLD-generated phosphatidic acid, particularly a mechanism by which the phospholipid may participate in the process of vesicular trafficking.  相似文献   
922.
923.
Pathogenic significance of IgA receptor interactions in IgA nephropathy   总被引:3,自引:0,他引:3  
IgA nephropathy (IgAN), the most common primary glomerulonephritis worldwide, frequently progresses to renal failure. The pathogenesis of this disease involves the deposition of undergalactosylated IgA1 complexes in the glomerular mesangium. How the IgA1 complexes are generated and why they are deposited in the mesangium remains unclear. We propose a model wherein two types of IgA receptors participate in sequential steps to promote the development of IgAN, with FcalphaRI (CD89) being initially involved in the formation of circulating IgA-containing complexes and, subsequently, transferrin receptor (CD71) in mediating mesangial deposition of IgA1 complexes.  相似文献   
924.
Molecular dynamics simulations of a keratin/peptide complex have been conducted to predict the binding affinity of four different peptides toward human hair. Free energy calculations on the peptides' interaction with the keratin model demonstrated that electrostatic interactions are believed to be the main driving force stabilizing the complex. The molecular mechanics-Poisson-Boltzmann surface area methodology used for the free energy calculations demonstrated that the dielectric constant in the protein's interior plays a major role in the free energy calculations, and the only way to obtain accordance between the free energy calculations and the experimental binding results was to use the average dielectric constant.  相似文献   
925.
926.
Trypanosoma brucei undergoes an essential process of mitochondrial uridine insertion and deletion RNA editing catalyzed by a 20S editosome. The multiprotein mitochondrial RNA-binding complex 1 (MRB1) is emerging as an equally essential component of the trypanosome RNA editing machinery, with additional functions in gRNA and mRNA stabilization. The distinct and overlapping protein compositions of reported MRB1 complexes and diverse MRB1 functions suggest that the complex is composed of subcomplexes with RNA-dependent and independent interactions. To determine the architecture of the MRB1 complex, we performed a comprehensive yeast two-hybrid analysis of 31 reported MRB1 proteins. We also used in vivo analyses of tagged MRB1 components to confirm direct and RNA-mediated interactions. Here, we show that MRB1 contains a core complex comprised of six proteins and maintained by numerous direct interactions. The MRB1 core associates with multiple subcomplexes and proteins through RNA-enhanced or RNA-dependent interactions. These findings provide a framework for interpretation of previous functional studies and suggest that MRB1 is a dynamic complex that coordinates various aspects of mitochondrial gene regulation.  相似文献   
927.
The development of stratified retinal cell architecture is highly conserved in all vertebrates, implying that a common fundamental molecular mechanism is involved in the generation of the organized retina. However, the detailed molecular mechanisms of retinal development are not fully understood. Here we have identified the Xenopus ortholog of prune and show that it is expressed in both differentiating and differentiated retinal domains during development. Interestingly, these spatial and temporal expression patterns coincide with the expression of prune binding partners, the NM23 family members. Overexpression of prune in retinal precursor cells significantly increases the ratio of Müller glial cells as observed by modulation of NM23 activity (Mochizuki et al., 2009). However, a mutated form of prune that has replacement of four aspartate (D) residues (D'Angelo et al., 2004), essential for phosphodiesterase activity, does not exhibit gliogenic activity. Our observations suggest that Xenopus prune may regulate Müller gliogenesis through phosphodiesterase-mediated regulation of NM23 family members.  相似文献   
928.
Po MD  Calarco JA  Zhen M 《Neuron》2012,73(2):207-209
The adult mammalian central nervous system exhibits restricted regenerative potential. Chen et?al. (2011) and El Bejjani and Hammarlund (2012) used Caenorhabditis elegans to uncover intrinsic factors that inhibit regeneration of axotomized mature neurons, opening avenues for potential therapeutics.  相似文献   
929.
Dendrites achieve characteristic spacing patterns during development to ensure appropriate coverage of territories. Mechanisms of dendrite positioning via?repulsive dendrite-dendrite interactions are beginning to be elucidated, but the control, and importance, of dendrite positioning relative to their substrate is poorly understood. We found that dendritic branches of Drosophila dendritic arborization sensory neurons can be positioned either at the basal surface of epidermal cells, or enclosed within epidermal invaginations. We show that integrins control dendrite positioning on or within the epidermis in a cell autonomous manner by promoting dendritic retention on the basal surface. Loss of integrin function in neurons resulted in excessive self-crossing and dendrite maintenance defects, the former indicating a role for substrate interactions in self-avoidance. In contrast to a contact-mediated mechanism, we find that integrins prevent crossings that are noncontacting between dendrites in different three-dimensional positions, revealing a requirement?for combined dendrite-dendrite and dendrite-substrate interactions in self-avoidance.  相似文献   
930.
In mitosis, animal cells lose their adhesion to the surrounding surfaces and become rounded. During mitotic exit, they reestablish these adhesions and at the same time physically contract and divide. How these competing processes are spatially segregated at the cell cortex remains mysterious. To address this question, we define the specific effector pathways used by RhoA and Rac1 in mitotic cells. We demonstrate that the MKlp1-CYK4 centralspindlin complex is a guanosine triphosphatase-activating protein (GAP) for Rac1 and not RhoA and that CYK4 negatively regulated Rac1 activity at the cell equator in anaphase. Cells expressing a CYK4 GAP mutant had defects in cytokinesis and showed elevated staining for the cell adhesion marker vinculin. These defects could be rescued by depletion of ARHGEF7 and p21-activated kinase, Rac1-specific effector proteins required for cell adhesion. Based on these findings, we propose that CYK4 GAP activity is required during anaphase to inhibit Rac1-dependent effector pathways associated with control of cell spreading and adhesion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号