首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6994篇
  免费   613篇
  国内免费   1篇
  2024年   11篇
  2023年   33篇
  2022年   96篇
  2021年   204篇
  2020年   91篇
  2019年   117篇
  2018年   159篇
  2017年   130篇
  2016年   235篇
  2015年   457篇
  2014年   482篇
  2013年   469篇
  2012年   658篇
  2011年   626篇
  2010年   357篇
  2009年   302篇
  2008年   469篇
  2007年   447篇
  2006年   398篇
  2005年   369篇
  2004年   331篇
  2003年   346篇
  2002年   286篇
  2001年   48篇
  2000年   33篇
  1999年   69篇
  1998年   65篇
  1997年   44篇
  1996年   40篇
  1995年   34篇
  1994年   23篇
  1993年   31篇
  1992年   22篇
  1991年   13篇
  1990年   17篇
  1989年   9篇
  1988年   9篇
  1987年   9篇
  1986年   5篇
  1985年   12篇
  1984年   9篇
  1983年   3篇
  1982年   3篇
  1981年   6篇
  1980年   7篇
  1979年   3篇
  1978年   4篇
  1977年   5篇
  1975年   4篇
  1974年   3篇
排序方式: 共有7608条查询结果,搜索用时 15 毫秒
151.
Human papillomaviruses (HPVs) cause benign and malignant tumors of the mucosal and cutaneous epithelium. The initial events regulating HPV infection impact the establishment of viral persistence, which is requisite for malignant progression of HPV-infected lesions. However, the precise mechanisms involved in HPV entry into host cells, including the cellular factors regulating virus uptake, are not clearly defined. We show that HPV16 exposure to human keratinocytes initiates epidermal growth factor receptor (EGFR)-dependent Src protein kinase activation that results in phosphorylation and extracellular translocation of annexin A2 (AnxA2). HPV16 particles interact with AnxA2 in association with S100A10 as a heterotetramer at the cell surface in a Ca2+-dependent manner, and the interaction appears to involve heparan-sulfonated proteoglycans. We show multiple lines of evidence that this interaction promotes virus uptake into host cells. An antibody to AnxA2 prevents HPV16 internalization, whereas an antibody to S100A10 blocks infection at a late endosomal/lysosomal site. These results suggest that AnxA2 and S100A10 have separate roles during HPV16 binding, entry, and trafficking. Our data additionally imply that AnxA2 and S100A10 may be involved in regulating the intracellular trafficking of virus particles prior to nuclear delivery of the viral genome.  相似文献   
152.
153.
154.
155.
In strongly weathered soils, leaf litter not only returns phosphorus (P) to the soil environment, it may also modify soil properties and soil solution chemistry, with the potential to decrease phosphate sorption and increase plant available P. Using a radioactive phosphate tracer (32P) and 1 h laboratory incubations we investigated the effect of litter inputs on phosphate sorption over two time scales: (1) long-term field litter manipulations (litter addition, control and litter removal) and (2) pulses of litter leachate (i.e. water extracts of leaf litter) from five species. Leachate pulse effects were compared to a simulated throughfall, which served as a control solution. Soil receiving long-term doubling of leaf litter maintained five-fold more phosphate in solution than the litter removal soil. In addition to the quantity of phosphate sorbed, the field litter addition treatment decreased the strength of phosphate sorption, as evaluated through extraction of sorbed 32P using a weakly acidic ammonium fluoride solution (Bray 1). In litter removal soil, leachate pulses significantly reduced phosphate sorption in comparison to the throughfall control for all five species evaluated. However, the ability of leachate pulses to reduce phosphate sorption decreased when soil had received field litter inputs. Across soils the effect of leachate pulses on phosphate sorption increased with net sorption of dissolved organic C, with the exception of leachate from one species that had a higher index of aromatic C concentration. These results demonstrate that litter inputs, as both long-term inputs and short-term leachate pulses, can decrease the quantity and strength of phosphate sorption, which may increase the biological availability of this key nutrient.  相似文献   
156.
Vacuolar protein sorting 1 (Vps1), the yeast homolog to human dynamin, is a GTP hydrolyzing protein, which plays an important role in protein sorting and targeting between the Golgi and late endosomal compartments. In this study, we assessed the functional significance of Vps1 in the membrane traffic towards the vacuole. We show here that vps1Δ cells accumulated FM4-64 to a greater extent than wild-type (WT) cells, suggesting slower endocytic degradation traffic toward the vacuole. In addition, we observed that two endosome-to-vacuole traffic markers, DsRed-FYVE and Ste2-GFP, were highly accumulated in Vps1-deficient cells, further supporting Vps1’s implication in efficient trafficking of endocytosed materials to the vacuole. Noteworthy, a simultaneous imaging analysis in conjunction with FM4-64 pulse-chase experiment further revealed that Vps1 plays a role in late endosome to the vacuole transport. Consistently, our subcellular localization analysis showed that Vps1 is present at the late endosome. The hyperaccumulation of endosomal intermediates in the vps1 mutant cells appears to be caused by the disruption of integrity of HOPS tethering complexes, manifested by mislocalization of Vps39 to the cytoplasm. Finally, we postulate that Vps1 functions together with the Endosomal Sorting Complex Required for Transport (ESCRT) complex at the late endosomal compartments, based on the observation that the double mutants, in which VPS1 along with singular ESCRT I, II and III genes have been disrupted, exhibited synthetic lethality. Together, we propose that Vps1 is required for correct and efficient trafficking from the late endosomal compartments to the vacuole.  相似文献   
157.
Normal enteric nervous system (ENS) development relies on numerous factors, including appropriate migration, proliferation, differentiation, and maturation of neural crest (NC) derivatives. Incomplete rostral to caudal migration of enteric neural crest-derived progenitors (ENPs) down the gut is at least partially responsible for the absence of enteric ganglia that is a hallmark feature of Hirschsprung disease (HSCR). The thought that ganglia proximal to aganglionosis are normal has guided surgical procedures for HSCR patients. However, chronic gastrointestinal dysfunction suffered by a subset of patients after surgery as well as studies in HSCR mouse models suggest that aberrant NC segregation and differentiation may be occurring in ganglionated regions of the intestine. Studies in mouse models that possess enteric ganglia throughout the length of the intestine (non-HSCR) have also found that certain genetic alterations affect neural crest lineage balance and interestingly many of these mutants also have functional gastrointestinal (GI) defects. It is possible that many GI disorders can be explained in part by imbalances in NC-derived lineages. Here we review studies evaluating ENS defects in HSCR and non-HSCR mouse models, concluding with clinical implications while highlighting areas requiring further study.  相似文献   
158.
Actin dynamics is important in determining cell shape, tension, and migration. Methods such as fluorescent speckle microscopy and spatial temporal image correlation spectroscopy have been used to capture high-resolution actin turnover dynamics within cells in two dimensions. However, these methods are not directly applicable in 3D due to lower resolution and poor contrast. Here, we propose to capture actin flow in 3D with high spatial-temporal resolution by combining nanoscale precise imaging by rapid beam oscillation and fluctuation spectroscopy techniques. To measure the actin flow along cell protrusions in cell expressing actin-eGFP cultured in a type I collagen matrix, the laser was orbited around the protrusion and its trajectory was modulated in a clover-shaped pattern perpendicularly to the protrusion. Orbits were also alternated at two positions closely spaced along the protrusion axis. The pair cross-correlation function was applied to the fluorescence fluctuation from these two positions to capture the flow of actin. Measurements done on nonmoving cellular protrusion tips showed no pair-correlation at two orbital positions indicating a lack of flow of F-actin bundles. However, in some protrusions, the pair-correlation approach revealed directional flow of F-actin bundles near the protrusion surface with flow rates in the range of ∼1 μm/min, comparable to results in two dimensions using fluorescent speckle microscopy. Furthermore, we found that the actin flow rate is related to the distance to the protrusion tip. We also observed collagen deformation by concomitantly detecting collagen fibers with reflectance detection during these actin motions. The implementation of the nanoscale precise imaging by rapid beam oscillation method with a cloverleaf-shaped trajectory in conjunction with the pair cross-correlation function method provides a quantitative way of capturing dynamic flows and organization of proteins during cell migration in 3D in conditions of poor contrast.  相似文献   
159.
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号