首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6961篇
  免费   613篇
  国内免费   1篇
  2024年   11篇
  2023年   33篇
  2022年   63篇
  2021年   204篇
  2020年   91篇
  2019年   117篇
  2018年   159篇
  2017年   130篇
  2016年   235篇
  2015年   457篇
  2014年   482篇
  2013年   469篇
  2012年   658篇
  2011年   626篇
  2010年   357篇
  2009年   302篇
  2008年   469篇
  2007年   447篇
  2006年   398篇
  2005年   369篇
  2004年   331篇
  2003年   346篇
  2002年   286篇
  2001年   48篇
  2000年   33篇
  1999年   69篇
  1998年   65篇
  1997年   44篇
  1996年   40篇
  1995年   34篇
  1994年   23篇
  1993年   31篇
  1992年   22篇
  1991年   13篇
  1990年   17篇
  1989年   9篇
  1988年   9篇
  1987年   9篇
  1986年   5篇
  1985年   12篇
  1984年   9篇
  1983年   3篇
  1982年   3篇
  1981年   6篇
  1980年   7篇
  1979年   3篇
  1978年   4篇
  1977年   5篇
  1975年   4篇
  1974年   3篇
排序方式: 共有7575条查询结果,搜索用时 31 毫秒
111.
In S. cerevisiae, the lysine methyltransferase Set1 is a member of the multiprotein complex COMPASS. Set1 catalyzes mono-, di- and trimethylation of the fourth residue, lysine 4, of histone H3 using methyl groups from S-adenosylmethionine, and requires a subset of COMPASS proteins for this activity. The methylation activity of COMPASS regulates gene expression and chromosome segregation in vivo. To improve understanding of the catalytic mechanism of Set1, single amino acid substitutions were made within the SET domain. These Set1 mutants were evaluated in vivo by determining the levels of K4-methylated H3, assaying the strength of gene silencing at the rDNA and using a genetic assessment of kinetochore function as a proxy for defects in Dam1 methylation. The findings indicate that no single conserved active site base is required for H3K4 methylation by Set1. Instead, our data suggest that a number of aromatic residues in the SET domain contribute to the formation of an active site that facilitates substrate binding and dictates product specificity. Further, the results suggest that the attributes of Set1 required for trimethylation of histone H3 are those required for Pol II gene silencing at the rDNA and kinetochore function.  相似文献   
112.
Old World frugivorous bats have been identified as natural hosts for emerging zoonotic viruses of significant public health concern, including henipaviruses (Nipah and Hendra virus), Ebola virus, and Marburg virus. Epidemiological studies of these viruses in bats often utilize serology to describe viral dynamics, with particular attention paid to juveniles, whose birth increases the overall susceptibility of the population to a viral outbreak once maternal immunity wanes. However, little is understood about bat immunology, including the duration of maternal antibodies in neonates. Understanding duration of maternally derived immunity is critical for characterizing viral dynamics in bat populations, which may help assess the risk of spillover to humans. We conducted two separate studies of pregnant Pteropus bat species and their offspring to measure the half-life and duration of antibodies to 1) canine distemper virus antigen in vaccinated captive Pteropus hypomelanus; and 2) Hendra virus in wild-caught, naturally infected Pteropus alecto. Both of these pteropid bat species are known reservoirs for henipaviruses. We found that in both species, antibodies were transferred from dam to pup. In P. hypomelanus pups, titers against CDV waned over a mean period of 228.6 days (95% CI: 185.4–271.8) and had a mean terminal phase half-life of 96.0 days (CI 95%: 30.7–299.7). In P. alecto pups, antibodies waned over 255.13 days (95% CI: 221.0–289.3) and had a mean terminal phase half-life of 52.24 days (CI 95%: 33.76–80.83). Each species showed a duration of transferred maternal immunity of between 7.5 and 8.5 months, which was longer than has been previously estimated. These data will allow for more accurate interpretation of age-related Henipavirus serological data collected from wild pteropid bats.  相似文献   
113.

Background

Serum creatinine and cystatin C are used as markers of glomerular filtration rate (GFR). The performance of these GFR markers relative to exogenously measured GFR (mGFR) in HIV-positive individuals is not well established.

Methods

We assessed the performance of the chronic kidney disease epidemiology collaboration equations based on serum concentrations of creatinine (eGFRcr), cystatin C (eGFRcys) and both biomarkers combined (eGFRcr-cys) in 187 HIV-positive and 98 HIV-negative participants. Measured GFR was calculated by plasma iohexol clearance. Bias and accuracy were defined as the difference between eGFR and mGFR and the percentage of eGFR observations within 30% of mGFR, respectively. Activated CD4 and CD8 T-cells (CD38+ HLA-DR+) were measured by flow cytometry.

Results

The median mGFR was >100 ml/min/1.73 m2 in both groups. All equations tended to be less accurate in HIV-positive than in HIV-negative subjects, with eGFRcr-cys being the most accurate overall. In the HIV-positive group, eGFRcys was significantly less accurate and more biased than eGFRcr and eGFRcr_cys. Additionally eGFRcys bias and accuracy were strongly associated with use of antiretroviral therapy, HIV RNA suppression, and percentages of activated CD4 or CD8 T-cells. Hepatitis C seropositivity was associated with larger eGFRcys bias in both HIV-positive and HIV-negative groups. In contrast, eGFRcr accuracy and bias were not associated with HIV-related factors, T-cell activation, or hepatitis C.

Conclusions

The performance of eGFRcys relative to mGFR was strongly correlated with HIV treatment factors and markers of T-cell activation, which may limit its usefulness as a GFR marker in this population.  相似文献   
114.
115.
Shrub willow has great potential as a dedicated bioenergy crop, but commercialization and adoption by growers and end-users will depend upon the identification and selection of high-yielding cultivars with biomass chemistry and quality amenable to conversion to biofuels and bioenergy. In this study, critical traits for biomass production were evaluated among new genotypes of shrub willow produced through hybrid breeding. This study assessed the variation in yield, pest and disease resistance, biomass composition, and wood density in shrub willow, as well as the impact of genotypic and environmental factors on these particular phenotypes. Analysis of clonal genotypes established on two contrasting sites in New York State, Tully and Belleville, showed statistical differences by site for all of the traits. The greatest yield was observed at Belleville, NY, for two cultivars, ‘Fish Creek’ (41 Mg?ha?1) and ‘Onondaga’ (40 Mg?ha?1). Yields of Salix eriocephala genotypes were lowest, and they displayed susceptibility to rust and beetle damage. Variation in cellulose content in the stem biomass was controlled by environmental factors, with the majority of the genotypes displaying greater cellulose content at Belleville compared with Tully. In contrast, wood density was significantly greater at Tully than Belleville, and cellulose content was correlated with wood density. There were no significant correlations between biomass yield and density or any of the composition traits. These trials demonstrate that new genotypes produce improved yield and pest and disease resistance, with diverse compositional traits that can be matched with conversion technologies.  相似文献   
116.
Botulinum neurotoxin (BoNT) is a potent and potentially lethal bacterial toxin that binds to host motor neurons, is internalized into the cell, and cleaves intracellular proteins that are essential for neurotransmitter release. BoNT is comprised of a heavy chain (HC), which mediates host cell binding and internalization, and a light chain (LC), which cleaves intracellular host proteins essential for acetylcholine release. While therapies that inhibit toxin binding/internalization have a small time window of administration, compounds that target intracellular LC activity have a much larger time window of administrations, particularly relevant given the extremely long half-life of the toxin. In recent years, small molecules have been heavily analyzed as potential LC inhibitors based on their increased cellular permeability relative to larger therapeutics (peptides, aptamers, etc.). Lead identification often involves high-throughput screening (HTS), where large libraries of small molecules are screened based on their ability to modulate therapeutic target function. Here we describe a FRET-based assay with a commercial BoNT/A LC substrate and recombinant LC that can be automated for HTS of potential BoNT inhibitors. Moreover, we describe a manual technique that can be used for follow-up secondary screening, or for comparing the potency of several candidate compounds.  相似文献   
117.
The ability to determine the prey-specific biomass intake of large predators is fundamental to their conservation. In the absence of actual prey data, researchers generally use a “unit mass” method (estimated as 3/4 adult female mass) to calculate the biomass intake of predators. However, differences in prey preference and range across geographic regions are likely to have an influence on biomass calculations. Here we investigate the influence of estimated prey mass on leopard biomass calculations, and subsequent carrying capacity estimates, in an understudied mountain population. Potential leopard feeding sites were identified using global positioning system (GPS) location clusters obtained from GPS collars. We investigated 200 potential leopard feeding sites, of which 96 were actual feeding sites. Jaw bones, horns, hooves, and other indicative bones were used to determine gender and age of prey items, which were subsequently used to calculate mass of each prey item based on previously published values. There were significant differences in the biomass values calculated using the traditional unit mass method and the calculated prey masses obtained from leopard feeding sites. However, there were no considerable differences in the carrying capacity estimates using the preferred prey species model and leopard density estimates calculated using a non-biased spatial approach, which suggests that estimating carnivore carrying capacity based on 3/4 adult female masses is a reliable method also for the mountain population in this study.  相似文献   
118.
119.
Forward genetics screens with N-ethyl-N-nitrosourea (ENU) provide a powerful way to illuminate gene function and generate mouse models of human disease; however, the identification of causative mutations remains a limiting step. Current strategies depend on conventional mapping, so the propagation of affected mice requires non-lethal screens; accurate tracking of phenotypes through pedigrees is complex and uncertain; out-crossing can introduce unexpected modifiers; and Sanger sequencing of candidate genes is inefficient. Here we show how these problems can be efficiently overcome using whole-genome sequencing (WGS) to detect the ENU mutations and then identify regions that are identical by descent (IBD) in multiple affected mice. In this strategy, we use a modification of the Lander-Green algorithm to isolate causative recessive and dominant mutations, even at low coverage, on a pure strain background. Analysis of the IBD regions also allows us to calculate the ENU mutation rate (1.54 mutations per Mb) and to model future strategies for genetic screens in mice. The introduction of this approach will accelerate the discovery of causal variants, permit broader and more informative lethal screens to be used, reduce animal costs, and herald a new era for ENU mutagenesis.  相似文献   
120.
Whole genome sequencing is a powerful tool in the discovery of single nucleotide polymorphisms (SNPs) and small insertions/deletions (indels) among mutant strains, which simplifies forward genetics approaches. However, identification of the causative mutation among a large number of non-causative SNPs in a mutant strain remains a big challenge. In the unicellular biflagellate green alga Chlamydomonas reinhardtii, we generated a SNP/indel library that contains over 2 million polymorphisms from four wild-type strains, one highly polymorphic strain that is frequently used in meiotic mapping, ten mutant strains that have flagellar assembly or motility defects, and one mutant strain, imp3, which has a mating defect. A comparison of polymorphisms in the imp3 strain and the other 15 strains allowed us to identify a deletion of the last three amino acids, Y313F314L315, in a protein phosphatase 2A catalytic subunit (PP2A3) in the imp3 strain. Introduction of a wild-type HA-tagged PP2A3 rescues the mutant phenotype, but mutant HA-PP2A3 at Y313 or L315 fail to rescue. Our immunoprecipitation results indicate that the Y313, L315, or YFLΔ mutations do not affect the binding of PP2A3 to the scaffold subunit, PP2A-2r. In contrast, the Y313, L315, or YFLΔ mutations affect both the stability and the localization of PP2A3. The PP2A3 protein is less abundant in these mutants and fails to accumulate in the basal body area as observed in transformants with either wild-type HA-PP2A3 or a HA-PP2A3 with a V310T change. The accumulation of HA-PP2A3 in the basal body region disappears in mated dikaryons, which suggests that the localization of PP2A3 may be essential to the mating process. Overall, our results demonstrate that the terminal YFL tail of PP2A3 is important in the regulation on Chlamydomonas mating.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号