首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13095篇
  免费   1018篇
  国内免费   424篇
  2024年   18篇
  2023年   90篇
  2022年   261篇
  2021年   513篇
  2020年   284篇
  2019年   369篇
  2018年   388篇
  2017年   318篇
  2016年   488篇
  2015年   838篇
  2014年   926篇
  2013年   937篇
  2012年   1193篇
  2011年   1143篇
  2010年   694篇
  2009年   578篇
  2008年   798篇
  2007年   735篇
  2006年   656篇
  2005年   593篇
  2004年   521篇
  2003年   491篇
  2002年   417篇
  2001年   146篇
  2000年   113篇
  1999年   152篇
  1998年   107篇
  1997年   102篇
  1996年   98篇
  1995年   79篇
  1994年   55篇
  1993年   66篇
  1992年   70篇
  1991年   55篇
  1990年   45篇
  1989年   28篇
  1988年   21篇
  1987年   34篇
  1986年   20篇
  1985年   25篇
  1984年   9篇
  1983年   8篇
  1982年   8篇
  1981年   9篇
  1980年   11篇
  1978年   4篇
  1977年   7篇
  1975年   2篇
  1974年   4篇
  1973年   4篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
991.
Glioma cells prominently express a unique splice variant of a large conductance, calcium-activated potassium channel (BK channel). These channels transduce changes in intracellular calcium to changes of K(+) conductance in the cells and have been implicated in growth control of normal and malignant cells. The Ca(2+) increase that facilitates channel activation is thought to occur via activation of intracellular calcium release pathways or influx of calcium through Ca(2+)-permeable ion channels. We show here that BK channel activation involves the activation of inositol 1,4,5-triphosphate receptors (IP(3)R), which localize near BK channels in specialized membrane domains called lipid rafts. Disruption of lipid rafts with methyl-beta-cyclodextrin disrupts the functional association of BK channel and calcium source resulting in a >50% reduction in K(+) conductance mediated by BK channels. The reduction of BK current by lipid raft disruption was overcome by the global elevation of intracellular calcium through inclusion of 750 nm Ca(2+) in the pipette solution, indicating that neither the calcium sensitivity of the channel nor their overall number was altered. Additionally, pretreatment of glioma cells with 2-aminoethoxydiphenyl borate to inhibit IP(3)Rs negated the effect of methyl-beta-cyclodextrin, providing further support that IP(3)Rs are the calcium source for BK channels. Taken together, these data suggest a privileged association of BK channels in lipid raft domains and provide evidence for a novel coupling of these Ca(2+)-sensitive channels to their second messenger source.  相似文献   
992.
Chemotherapy resistance accounts for the high mortality rates in patients with advanced cancers. We previously used a genomics approach to determine novel genes associated with this phenomenon and identified secreted protein acidic and rich in cysteine (SPARC) as a chemosensitizer capable of reversing therapy resistance in colorectal cancer cells by enhancing apoptosis in vitro and tumor regression in vivo. Here, we examined the mechanisms by which SPARC enhances apoptosis in the presence of chemotherapy. We show that SPARC potentiates apoptosis by augmenting the signaling cascade in a caspase-8-dependent manner, because apoptosis can be abolished by caspase 8 small interfering RNA in the presence of SPARC. This occurs independently of death receptor activation and leads to downstream involvement of Bid and subsequent apoptosis. Interestingly, this results from an interaction between SPARC and the N terminus of the procaspase-8 DED-containing domain. These exciting findings provide an initial map of the apoptosis signaling events mediated by SPARC and how this can ultimately result in the reversal of chemotherapy resistance and enhanced tumor regression. This signaling cascade can be exploited therapeutically and may have potential clinical implications for patients with advanced and therapy-refractory cancers.  相似文献   
993.
Naive T cells undergo slow homeostatic proliferation in response to T cell lymphopenia, which is also called lymphopenia-induced proliferation (LIP). IL-7 is critically required for this process, but previous studies suggested IL-15 was expendable for LIP of naive CD8 T cells. In contrast, we show that IL-15 is important for sustained CD8 T cell proliferation and accumulation in a lymphopenic setting, as revealed by truncated LIP in IL-15(-/-) hosts. At the same time, we find that IL-12 enhances LIP by acting directly on the CD8 T cells and independently of IL-15, suggesting distinct pathways by which cytokines can regulate homeostatic proliferation. Interestingly, the memory-phenotype CD8 T cell generated by LIP in IL-15(-/-) hosts are phenotypically distinct from the rare endogenous memory-phenotype cells found in IL-15(-/-) animals, suggesting these cells are generated by different means. These findings demonstrate that cytokine requirements for LIP change during the process itself, illustrating the need to identify factors that regulate successive stages of lymphopenia-driven proliferation.  相似文献   
994.
995.
Deng L  Dai P  Ciro A  Smee DF  Djaballah H  Shuman S 《Journal of virology》2007,81(24):13392-13402
The bioterror threat of a smallpox outbreak in an unvaccinated population has mobilized efforts to develop new antipoxviral agents. By screening a library of known drugs, we identified 13 compounds that inhibited vaccinia virus replication at noncytotoxic doses. The anticancer drug mitoxantrone is unique among the inhibitors identified in that it has no apparent impact on viral gene expression. Rather, it blocks processing of viral structural proteins and assembly of mature progeny virions. The isolation of mitoxantrone-resistant vaccinia strains underscores that a viral protein is the likely target of the drug. Whole-genome sequencing of mitoxantrone-resistant viruses pinpointed missense mutations in the N-terminal domain of vaccinia DNA ligase. Despite its favorable activity in cell culture, mitoxantrone administered intraperitoneally at the maximum tolerated dose failed to protect mice against a lethal intranasal infection with vaccinia virus.  相似文献   
996.
The use of fluorescence calibration beads has been the hallmark of quantitative flow cytometry. It has enabled the direct comparison of interlaboratory data as well as quality control in clinical flow cytometry. In this article, we describe a simple method for producing color-generalizable calibration beads based on streptavidin functionalized quantum dots. Based on their broad absorption spectra and relatively narrow emission, which is tunable on the basis of dot size, quantum dot calibration beads can be made for any fluorophore that matches their emission color. In an earlier publication, we characterized the spectroscopic properties of commercial streptavidin functionalized dots (Invitrogen). Here we describe the molecular assembly of these dots on biotinylated beads. The law of mass action is used to readily define the site densities of the dots on the beads. The applicability of these beads is tested against the industry standard, namely commercial fluorescein calibration beads. The utility of the calibration beads is also extended to the characterization surface densities of dot-labeled epidermal growth factor ligands as well as quantitative indicators of the binding of dot-labeled virus particles to cells.  相似文献   
997.
An increasing number of genes are being identified for which the corresponding mRNAs contain different combinations of the encoded exons. This highly regulated exon choice, or alternative splicing, is often tissue-specific and potentially could differentially affect cellular functions. Alternative splicing is therefore not only a means to increase the coding capacity of the genome, but also to regulate gene expression during differentiation or development. To both evaluate the importance for cellular functions and define the regulatory pathways of alternative splicing, it is necessary to progress from the in vitro or ex vivo experimental models actually used towards in vivo whole-animal studies. We present here the amphibian, Xenopus, as an experimental model highly amenable for such studies. The various experimental approaches that can be used with Xenopus oocytes and embryos to characterize regulatory sequence elements and factors are presented and the advantages and drawbacks of these approaches are discussed. Finally, the real possibilities for large-scale identification of mRNAs containing alternatively spliced exons, the tissue-specific patterns of exon usage and the way in which these patterns are modified by perturbing the relative amount of splicing factors are discussed.  相似文献   
998.
999.
Inhibition of c-Myc activity by ribosomal protein L11   总被引:2,自引:0,他引:2       下载免费PDF全文
Dai MS  Arnold H  Sun XX  Sears R  Lu H 《The EMBO journal》2007,26(14):3332-3345
  相似文献   
1000.
K63 polyubiquitin chains spatially and temporally link innate immune signaling effectors such that cytokine release can be coordinated. Crohn's disease is a prototypical inflammatory disorder in which this process may be faulty as the major Crohn's disease-associated protein, NOD2 (nucleotide oligomerization domain 2), regulates the formation of K63-linked polyubiquitin chains on the I kappa kinase (IKK) scaffolding protein, NEMO (NF-kappaB essential modifier). In this work, we study these K63-linked ubiquitin networks to begin to understand the biochemical basis for the signaling cross talk between extracellular pathogen Toll-like receptors (TLRs) and intracellular pathogen NOD receptors. This work shows that TLR signaling requires the same ubiquitination event on NEMO to properly signal through NF-kappaB. This ubiquitination is partially accomplished through the E3 ubiquitin ligase TRAF6. TRAF6 is activated by NOD2, and this activation is lost with a major Crohn's disease-associated NOD2 allele, L1007insC. We further show that TRAF6 and NOD2/RIP2 share the same biochemical machinery (transforming growth factor beta-activated kinase 1 [TAK1]/TAB/Ubc13) to activate NF-kappaB, allowing TLR signaling and NOD2 signaling to synergistically augment cytokine release. These findings suggest a biochemical mechanism for the faulty cytokine balance seen in Crohn's disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号