首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7534篇
  免费   681篇
  国内免费   2篇
  2024年   11篇
  2023年   34篇
  2022年   102篇
  2021年   219篇
  2020年   100篇
  2019年   130篇
  2018年   169篇
  2017年   141篇
  2016年   253篇
  2015年   491篇
  2014年   511篇
  2013年   505篇
  2012年   690篇
  2011年   652篇
  2010年   380篇
  2009年   322篇
  2008年   493篇
  2007年   459篇
  2006年   413篇
  2005年   378篇
  2004年   339篇
  2003年   356篇
  2002年   300篇
  2001年   65篇
  2000年   47篇
  1999年   78篇
  1998年   73篇
  1997年   49篇
  1996年   45篇
  1995年   37篇
  1994年   29篇
  1993年   34篇
  1992年   26篇
  1991年   18篇
  1990年   22篇
  1989年   16篇
  1988年   16篇
  1987年   15篇
  1986年   8篇
  1985年   13篇
  1984年   9篇
  1982年   10篇
  1981年   8篇
  1980年   9篇
  1978年   9篇
  1977年   8篇
  1974年   6篇
  1973年   6篇
  1971年   7篇
  1965年   6篇
排序方式: 共有8217条查询结果,搜索用时 31 毫秒
971.
Formation of the death-inducing signaling complex (DISC) is a critical step in death receptor-mediated apoptosis, yet the mechanisms underlying assembly of this key multiprotein complex remain unclear. Using quantitative mass spectrometry, we have delineated the stoichiometry of the native TRAIL DISC. While current models suggest that core DISC components are present at a ratio of 1:1, our data indicate that FADD is substoichiometric relative to TRAIL-Rs or DED-only proteins; strikingly, there is up to 9-fold more caspase-8 than FADD in the DISC. Using structural modeling, we propose an alternative DISC model in which procaspase-8 molecules interact sequentially, via their DED domains, to form a caspase-activating chain. Mutating key interacting residues in procaspase-8 DED2 abrogates DED chain formation in cells and disrupts TRAIL/CD95 DISC-mediated procaspase-8 activation in?a functional DISC reconstitution model. This provides direct experimental evidence for a DISC model in which DED chain assembly drives caspase-8 dimerization/activation, thereby triggering cell death.  相似文献   
972.
973.
Learning and memory deficits typify patients with mild cognitive impairment (MCI) and are generally attributed to medial temporal lobe dysfunction. Although the hippocampus is perhaps the most commonly studied neuroanatomical structure in these patients, there have been few attempts to identify rehabilitative interventions that facilitate its functioning. Here, we present results from a randomized, controlled, single-blind study in which patients with MCI and healthy elderly controls (HEC) were randomized to either three sessions of mnemonic strategy training (MS) or a matched-exposure control group (XP). All participants underwent pre- and posttraining fMRI scanning as they encoded and retrieved object-location associations. For the current report, fMRI analyses were restricted to the hippocampus, as defined anatomically. Before training, MCI patients showed reduced hippocampal activity during both encoding and retrieval, relative to HEC. Following training, the MCI MS group demonstrated increased activity during both encoding and retrieval. There were significant differences between the MCI MS and MCI XP groups during retrieval, especially within the right hippocampus. Thus, MS facilitated hippocampal functioning in a partially restorative manner. We conclude that cognitive rehabilitation techniques may help mitigate hippocampal dysfunction in MCI patients.  相似文献   
974.
975.

Background

Chlamydia possess a unique family of autotransporter proteins known as the Polymorphic membrane proteins (Pmps). While the total number of pmp genes varies between Chlamydia species, all encode a single pmpD gene. In both Chlamydia trachomatis (C. trachomatis) and C. pneumoniae, the PmpD protein is proteolytically cleaved on the cell surface. The current study was carried out to determine the cleavage patterns of the PmpD protein in the animal pathogen C. abortus (termed Pmp18D).

Methodology/Principal Findings

Using antibodies directed against different regions of Pmp18D, proteomic techniques revealed that the mature protein was cleaved on the cell surface, resulting in a100 kDa N-terminal product and a 60 kDa carboxy-terminal protein. The N-terminal protein was further processed into 84, 76 and 73 kDa products. Clustering analysis resolved PmpD proteins into three distinct clades with C. abortus Pmp18D, being most similar to those originating from C. psittaci, C. felis and C. caviae.

Conclusions/Significance

This study indicates that C. abortus Pmp18D is proteolytically processed at the cell surface similar to the proteins of C. trachomatis and C. pneumoniae. However, patterns of cleavage are species-specific, with low sequence conservation of PmpD across the genus. The absence of conserved domains indicates that the function of the PmpD molecule in chlamydia remains to be elucidated.  相似文献   
976.

Background

Heme oxygenase-1 (HO-1) concentrations have been recently reported to be elevated in impaired glucose tolerance and type 2 diabetes mellitus (T2DM). However, no study has examined the association between HO-1 concentrations and gestational diabetes mellitus (GDM).

Methods

In a case-control study, nested within a prospective cohort of pregnant women (186 GDM cases and 191 women who remained eu-glycemic through pregnancy), we assessed the association of maternal serum HO-1 concentrations, measured in samples collected at 16 weeks gestation, on average, with subsequent risk of GDM. Maternal serum HO-1 concentrations were determined using ELISA. We fitted multivariate logistic regression models to derive estimates of odds ratios (ORs) and 95% confidence intervals (CIs).

Results

Median serum HO-1 concentrations in early pregnancy were lower in women who subsequently developed GDM compared with those who did not (1.60 vs. 1.80 ng/mL, p-value = 0.002). After adjusting for maternal age, race, family history of T2DM and pre-pregnancy body mass index, women with HO-1≥3.05 ng/mL (highest decile) experienced a 74% reduction of GDM risk (95% CI; 0.09–0.77) compared with women whose concentrations were<1.23 ng/mL (lowest quartile).

Conclusion

Serum HO-1 concentrations were inversely associated with subsequent GDM risk. These findings underscore the role of oxidative stress in the pathogenesis of GDM. Additional studies are warranted to confirm the clinical utility of serum HO-1 in diagnosis of GDM, particularly in the early pregnancy.  相似文献   
977.
Despite being an essential vitamin, folate has been implicated to enhance tumor growth, as evidenced by reports on overexpression of folate receptor alpha (FRα) in carcinomas. The role of another folate transporter, reduced folate carrier (RFC), is largely unknown. This study investigated the roles of folate, FRα and RFC in ovarian cancers. We demonstrated FRα mRNA and protein overexpression and reduced RFC expression in association with FRα gene amplification and RFC promoter hypermethylation, respectively. FRα overexpression was associated with tumor progression while RFC expression incurred a favorable clinical outcome. Such reciprocal expression pattern was also observed in ovarian cancer cell lines. Folate was shown to promote cancer cell proliferation, migration and invasion in vitro, and down-regulate E-cadherin expression. This effect was blocked after either stable knockdown of FRα or ectopic overexpression of RFC. This hitherto unreported phenomenon suggests that, RFC can serve as a balancing partner of FRα and confer a protective effect in patients with high FRα-expressing ovarian carcinomas, as evidenced by their prolonged overall and disease-free survivals. In conclusion, we report on the paradoxical impact of FRα (putative oncogenic) and RFC (putative tumor suppressive) in human malignancies. FRα and RFC may potentially be explored as therapeutic target or prognostic marker respectively. We recommend caution and additional research on folate supplements in cancer patients.  相似文献   
978.
Embryonic heart valve primordia (cushions) maintain unidirectional blood flow during development despite an increasingly demanding mechanical environment. Recent studies demonstrate that atrioventricular (AV) cushions stiffen over gestation, but the molecular mechanisms of this process are unknown. Transforming growth factor-beta (TGFβ) and serotonin (5-HT) signaling modulate tissue biomechanics of postnatal valves, but less is known of their role in the biomechanical remodeling of embryonic valves. In this study, we demonstrate that exogenous TGFβ3 increases AV cushion biomechanical stiffness and residual stress, but paradoxically reduces matrix compaction. We then show that TGFβ3 induces contractile gene expression (RhoA, aSMA) and extracellular matrix expression (col1α2) in cushion mesenchyme, while simultaneously stimulating a two-fold increase in proliferation. Local compaction increased due to an elevated contractile phenotype, but global compaction appeared reduced due to proliferation and ECM synthesis. Blockade of TGFβ type I receptors via SB431542 inhibited the TGFβ3 effects. We next showed that exogenous 5-HT does not influence cushion stiffness by itself, but synergistically increases cushion stiffness with TGFβ3 co-treatment. 5-HT increased TGFβ3 gene expression and also potentiated TGFβ3 induced gene expression in a dose-dependent manner. Blockade of the 5HT2b receptor, but not 5-HT2a receptor or serotonin transporter (SERT), resulted in complete cessation of TGFβ3 induced mechanical strengthening. Finally, systemic 5-HT administration in ovo induced cushion remodeling related defects, including thinned/atretic AV valves, ventricular septal defects, and outflow rotation defects. Elevated 5-HT in ovo resulted in elevated remodeling gene expression and increased TGFβ signaling activity, supporting our ex-vivo findings. Collectively, these results highlight TGFβ/5-HT signaling as a potent mechanism for control of biomechanical remodeling of AV cushions during development.  相似文献   
979.

Background

A major hurdle in the use of exogenous stems cells for therapeutic regeneration of injured myocardium remains the poor survival of implanted cells. To date, the delivery of stem cells into myocardium has largely focused on implantation of cell suspensions.

Methodology and Principal Findings

We hypothesize that delivering progenitor cells in an aggregate form would serve to mimic the endogenous state with proper cell-cell contact, and may aid the survival of implanted cells. Microwell methodologies allow for the culture of homogenous 3D cell aggregates, thereby allowing cell-cell contact. In this study, we find that the culture of cardiac progenitor cells in a 3D cell aggregate augments cell survival and protects against cellular toxins and stressors, including hydrogen peroxide and anoxia/reoxygenation induced cell death. Moreover, using a murine model of cardiac ischemia-reperfusion injury, we find that delivery of cardiac progenitor cells in the form of 3D aggregates improved in vivo survival of implanted cells.

Conclusion

Collectively, our data support the notion that growth in 3D cellular systems and maintenance of cell-cell contact improves exogenous cell survival following delivery into myocardium. These approaches may serve as a strategy to improve cardiovascular cell-based therapies.  相似文献   
980.
Inhibition of caspase-6 is a potential therapeutic strategy for some neurodegenerative diseases, but it has been difficult to develop selective inhibitors against caspases. We report the discovery and characterization of a potent inhibitor of caspase-6 that acts by an uncompetitive binding mode that is an unprecedented mechanism of inhibition against this target class. Biochemical assays demonstrate that, while exquisitely selective for caspase-6 over caspase-3 and -7, the compound’s inhibitory activity is also dependent on the amino acid sequence and P1’ character of the peptide substrate. The crystal structure of the ternary complex of caspase-6, substrate-mimetic and an 11 nM inhibitor reveals the molecular basis of inhibition. The general strategy to develop uncompetitive inhibitors together with the unique mechanism described herein provides a rationale for engineering caspase selectivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号