首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7098篇
  免费   626篇
  国内免费   1篇
  2024年   11篇
  2023年   35篇
  2022年   96篇
  2021年   205篇
  2020年   92篇
  2019年   119篇
  2018年   158篇
  2017年   130篇
  2016年   238篇
  2015年   460篇
  2014年   481篇
  2013年   474篇
  2012年   663篇
  2011年   630篇
  2010年   361篇
  2009年   305篇
  2008年   476篇
  2007年   455篇
  2006年   404篇
  2005年   372篇
  2004年   333篇
  2003年   350篇
  2002年   289篇
  2001年   53篇
  2000年   36篇
  1999年   71篇
  1998年   65篇
  1997年   45篇
  1996年   41篇
  1995年   35篇
  1994年   24篇
  1993年   31篇
  1992年   26篇
  1991年   14篇
  1990年   17篇
  1989年   8篇
  1988年   9篇
  1987年   10篇
  1986年   4篇
  1985年   11篇
  1984年   8篇
  1983年   4篇
  1982年   4篇
  1981年   6篇
  1980年   7篇
  1978年   6篇
  1977年   5篇
  1973年   4篇
  1963年   4篇
  1932年   6篇
排序方式: 共有7725条查询结果,搜索用时 15 毫秒
901.
Mechanisms governing the polarization of plant cell division are poorly understood. Previously, we identified pangloss1 (PAN1) as a leucine-rich repeat–receptor-like kinase (LRR-RLK) that promotes the polarization of subsidiary mother cell (SMC) divisions toward the adjacent guard mother cell (GMC) during stomatal development in maize (Zea mays). Here, we identify pangloss2 (PAN2) as a second LRR-RLK promoting SMC polarization. Quantitative proteomic analysis identified a PAN2 candidate by its depletion from membranes of pan2 single and pan1;pan2 double mutants. Genetic mapping and sequencing of mutant alleles confirmed the identity of this protein as PAN2. Like PAN1, PAN2 has a catalytically inactive kinase domain and accumulates in SMCs at sites of GMC contact before nuclear polarization. The timing of polarized PAN1 and PAN2 localization is very similar, but PAN2 acts upstream because it is required for polarized accumulation of PAN1 but is independent of PAN1 for its own localization. We find no evidence that PAN2 recruits PAN1 to the GMC contact site via a direct or indirect physical interaction, but PAN2 interacts with itself. Together, these results place PAN2 at the top of a cascade of events promoting the polarization of SMC divisions, potentially functioning to perceive or amplify GMC-derived polarizing cues.  相似文献   
902.
In marine Synechococcus there is evidence for the adaptive evolution of spectrally distinct forms of the major light harvesting pigment phycoerythrin (PE). Recent research has suggested that these spectral forms of PE have a different evolutionary history than the core genome. However, a lack of explicit statistical testing of alternative hypotheses or for selection on these genes has made it difficult to evaluate the evolutionary relationships between spectral forms of PE or the role horizontal gene transfer (HGT) may have had in the adaptive phenotypic evolution of the pigment system in marine Synechococcus. In this work, PE phylogenies of picocyanobacteria with known spectral phenotypes, including newly co-isolated strains of marine Synechococcus from the Gulf of Mexico, were constructed to explore the diversification of spectral phenotype and PE evolution in this group more completely. For the first time, statistical evaluation of competing evolutionary hypotheses and tests for positive selection on the PE locus in picocyanobacteria were performed. Genes for PEs associated with specific PE spectral phenotypes formed strongly supported monophyletic clades within the PE tree with positive directional selection driving evolution towards higher phycourobilin (PUB) content. The presence of the PUB-lacking phenotype in PE-containing marine picocyanobacteria from cyanobacterial lineages identified as Cyanobium is best explained by HGT into this group from marine Synechococcus. Taken together, these data provide strong examples of adaptive evolution of a single phenotypic trait in bacteria via mutation, positive directional selection and horizontal gene transfer.  相似文献   
903.
The transforming growth factor-β (TGF-β) signaling pathway is often misregulated during cancer progression. In early stages of tumorigenesis, TGF-β acts as a tumor suppressor by inhibiting proliferation and inducing apoptosis. However, as the disease progresses, TGF-β switches to promote tumorigenic cell functions, such as epithelial-mesenchymal transition (EMT) and increased cell motility. Dramatic changes in the cellular microenvironment are also correlated with tumor progression, including an increase in tissue stiffness. However, it is unknown whether these changes in tissue stiffness can regulate the effects of TGF-β. To this end, we examined normal murine mammary gland cells and Madin-Darby canine kidney epithelial cells cultured on polyacrylamide gels with varying rigidity and treated with TGF-β1. Varying matrix rigidity switched the functional response to TGF-β1. Decreasing rigidity increased TGF-β1-induced apoptosis, whereas increasing rigidity resulted in EMT. Matrix rigidity did not change Smad signaling, but instead regulated the PI3K/Akt signaling pathway. Direct genetic and pharmacologic manipulations further demonstrated a role for PI3K/Akt signaling in the apoptotic and EMT responses. These findings demonstrate that matrix rigidity regulates a previously undescribed switch in TGF-β-induced cell functions and provide insight into how changes in tissue mechanics during disease might contribute to the cellular response to TGF-β.  相似文献   
904.
Trafficking of protein and lipid cargo through the secretory pathway in eukaryotic cells is mediated by membrane-bound vesicles. Secretory vesicle targeting and fusion require a conserved multisubunit protein complex termed the exocyst, which has been implicated in specific tethering of vesicles to sites of polarized exocytosis. The exocyst is directly involved in regulating soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) complexes and membrane fusion through interactions between the Sec6 subunit and the plasma membrane SNARE protein Sec9. Here we show another facet of Sec6 function-it directly binds Sec1, another SNARE regulator, but of the Sec1/Munc18 family. The Sec6-Sec1 interaction is exclusive of Sec6-Sec9 but compatible with Sec6-exocyst assembly. In contrast, the Sec6-exocyst interaction is incompatible with Sec6-Sec9. Therefore, upon vesicle arrival, Sec6 is proposed to release Sec9 in favor of Sec6-exocyst assembly and to simultaneously recruit Sec1 to sites of secretion for coordinated SNARE complex formation and membrane fusion.  相似文献   
905.
The purpose of this study was to examine the effects of 7 days of supplementation with 20 g·d?1 of creatine monohydrate (CM) on mean power (MP) and peak power (PP) from the Wingate anaerobic test (WAnT), body weight (BW), 1-repetition maximum (1RM) bilateral leg extension (LE) strength, and 1RM bench press (BP) strength. This study used a randomized, double-blind, placebo-controlled design. Twenty-two men (mean ± SD: age = 22.1 ± 2.0 years; height = 178.0 ± 5.8 cm; body weight [BW] = 77.6 ± 7.6 kg) were randomly assigned to either a supplement (SUPP; n = 10) or placebo (PLAC; n = 12) group. The SUPP group ingested 20 g·d?1 of CM powder for 7 days, whereas the PLAC ingested 20 g·d?1 of maltodextrin powder. Measurements for the PLAC and SUPP groups included BW, PP, and MP from two 30-second WAnTs (separated by 7 minutes), and 1RM strength for LE and BP. Testing was conducted before (PRE) and after (POST) 7 days of ingesting either the supplement or placebo. The results of this study indicated that there was a significant (p ≤ 0.05) increase from PRE to POST testing in MP for the SUPP group (5.4%) but not for the PLAC group (-0.3%). There were no between-group differences, however, for 1RM LE and 1RM BP strength. Furthermore, there were no changes in PP or BW for either group. The findings of this study indicated that loading with 20 g·d?1 of CM for 7 days increased MP (5.4% increase) from the WAnT, but it had no effect on strength (1RM LE and 1RM BP), PP, or BW.  相似文献   
906.
The lipid transporter Arv1 regulates sterol trafficking, and glycosylphosphatidylinositol and sphingolipid biosyntheses in Saccharomyces cerevisiae. ScArv1 contains an Arv1 homology domain (AHD) that is conserved at the amino acid level in the pathogenic fungal species, Candida albicans and Candida glabrata. Here we show S. cerevisiae cells lacking Arv1 are highly susceptible to antifungal drugs. In the presence of drug, Scarv1 cells are unable to induce ERG gene expression, have an altered pleiotrophic drug response, and are defective in multi-drug resistance efflux pump expression. All phenotypes are remediated by ectopic expression of CaARV1 or CgARV1. The AHDs of these pathogenic fungi are required for specific drug tolerance, demonstrating conservation of function. In order to understand how Arv1 regulates antifungal susceptibility, we examined sterol trafficking. CaARV1/CgARV1 expression suppressed the sterol trafficking defect of Scarv1 cells. Finally, we show that C. albicansarv1/arv1 cells are avirulent using a BALB/c disseminated mouse model. We suggest that overall cell survival in response to antifungal treatment requires the lipid transporter function of Arv1.  相似文献   
907.
The main determinant of pathogenicity in Ustilago maydis is the b-mating locus, where establishment of heterozygosity is sufficient to cause galls/tumors on maize plants. However, matings between haploids where one partner contains a mutation, in e.g., the smu1 gene, encoding a Ste20-like PAK kinase, often show reduced mating and pathogenicity compared to wild type. Here we show that similarly, diploids lacking one copy of smu1, are reduced in production of aerial hyphae, but do not show significantly-reduced virulence. Haplo-insufficiency was also observed for additional genes. UmPde1 is a cyclic phosphodiesterase involved in cAMP turnover as part of the cAMP-dependent PKA pathway. Hsl7 plays a role in cell length and in the filamentous response to low ammonium in haploid cells. Diploids deleted for one copy of either the pde1 or hsl7 genes had reduced or increased production of aerial hyphae, respectively, and both were severely impaired in virulence compared to wild type diploids. rho1 and pdc1 are two genes essential for cell viability in haploids. These genes also displayed haplo-insufficiency for pathogenesis. rho1/Δrho1 diploid cells were defective in pheromone production and detection, aerial hyphae induction, and were avirulent. In contrast, pdc1/Δpdc1 diploid cells only failed to produce tumors when applied to maize whorls. We predict the haplo-insufficiency of most of these signaling components is due to stoichiometric imbalance of the respective gene products with their interacting partners, thereby impairing virulence-induction mechanism(s). Further investigation of the bases for such haplo-insufficiency as well as of additional genes displaying this phenotype will provide important insights into fundamental aspects of development in this organism as well as inter-nuclear communication and genetic control.  相似文献   
908.
Formation of the death-inducing signaling complex (DISC) is a critical step in death receptor-mediated apoptosis, yet the mechanisms underlying assembly of this key multiprotein complex remain unclear. Using quantitative mass spectrometry, we have delineated the stoichiometry of the native TRAIL DISC. While current models suggest that core DISC components are present at a ratio of 1:1, our data indicate that FADD is substoichiometric relative to TRAIL-Rs or DED-only proteins; strikingly, there is up to 9-fold more caspase-8 than FADD in the DISC. Using structural modeling, we propose an alternative DISC model in which procaspase-8 molecules interact sequentially, via their DED domains, to form a caspase-activating chain. Mutating key interacting residues in procaspase-8 DED2 abrogates DED chain formation in cells and disrupts TRAIL/CD95 DISC-mediated procaspase-8 activation in?a functional DISC reconstitution model. This provides direct experimental evidence for a DISC model in which DED chain assembly drives caspase-8 dimerization/activation, thereby triggering cell death.  相似文献   
909.
910.
Learning and memory deficits typify patients with mild cognitive impairment (MCI) and are generally attributed to medial temporal lobe dysfunction. Although the hippocampus is perhaps the most commonly studied neuroanatomical structure in these patients, there have been few attempts to identify rehabilitative interventions that facilitate its functioning. Here, we present results from a randomized, controlled, single-blind study in which patients with MCI and healthy elderly controls (HEC) were randomized to either three sessions of mnemonic strategy training (MS) or a matched-exposure control group (XP). All participants underwent pre- and posttraining fMRI scanning as they encoded and retrieved object-location associations. For the current report, fMRI analyses were restricted to the hippocampus, as defined anatomically. Before training, MCI patients showed reduced hippocampal activity during both encoding and retrieval, relative to HEC. Following training, the MCI MS group demonstrated increased activity during both encoding and retrieval. There were significant differences between the MCI MS and MCI XP groups during retrieval, especially within the right hippocampus. Thus, MS facilitated hippocampal functioning in a partially restorative manner. We conclude that cognitive rehabilitation techniques may help mitigate hippocampal dysfunction in MCI patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号