首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7144篇
  免费   622篇
  国内免费   1篇
  7767篇
  2024年   12篇
  2023年   42篇
  2022年   109篇
  2021年   204篇
  2020年   94篇
  2019年   118篇
  2018年   158篇
  2017年   133篇
  2016年   239篇
  2015年   460篇
  2014年   488篇
  2013年   475篇
  2012年   661篇
  2011年   634篇
  2010年   359篇
  2009年   303篇
  2008年   481篇
  2007年   446篇
  2006年   400篇
  2005年   371篇
  2004年   334篇
  2003年   351篇
  2002年   287篇
  2001年   52篇
  2000年   39篇
  1999年   78篇
  1998年   69篇
  1997年   47篇
  1996年   41篇
  1995年   35篇
  1994年   23篇
  1993年   33篇
  1992年   27篇
  1991年   17篇
  1990年   22篇
  1989年   11篇
  1988年   11篇
  1987年   16篇
  1986年   9篇
  1985年   12篇
  1984年   8篇
  1983年   4篇
  1982年   4篇
  1981年   8篇
  1980年   8篇
  1978年   5篇
  1977年   6篇
  1975年   4篇
  1974年   4篇
  1971年   2篇
排序方式: 共有7767条查询结果,搜索用时 15 毫秒
251.
Controversies remain over the relationships among several of the marsupial families and between the three major extant lineages of mammals: Eutheria (placentals), Metatheria (marsupials), and Prototheria (monotremes). Two opposing hypotheses place the marsupials as either sister to the placental mammals (Theria hypothesis) or sister to the monotremes (Palimpsest or Marsupionta hypothesis). A nuclear gene that has proved useful for analyzing phylogenies of vertebrates is the recombination activation gene-1 (RAG1). RAG1 is a highly conserved gene in vertebrates and likely entered the genome by horizontal transfer early in the evolution of jawed vertebrates. Phylogenetic analyses were performed on RAG1 sequences from seven placentals, 28 marsupials, and all three living monotreme species. Phylogenetic analyses of RAG1 sequences support many of the traditional relationships among the marsupials and suggest a relationship between bandicoots (order Peramelina) and the marsupial mole (order Notoryctemorphia), two lineages whose position in the phylogenetic tree has been enigmatic. A sister relationship between South American shrew opossums (order Paucituberculata) and all other living marsupial orders is also suggested by RAG1. The relationship between the three major groups of mammals is consistent with the Theria hypothesis, with the monotremes as the sister group to a clade containing marsupials and placentals.  相似文献   
252.
253.
Human activities often replace native forests with warmer, modified habitats that represent novel thermal environments for biodiversity. Reducing biodiversity loss hinges upon identifying which species are most sensitive to the environmental conditions that result from habitat modification. Drawing on case studies and a meta‐analysis, we examined whether observed and modelled thermal traits, including heat tolerances, variation in body temperatures, and evaporative water loss, explained variation in sensitivity of ectotherms to habitat modification. Low heat tolerances of lizards and amphibians and high evaporative water loss of amphibians were associated with increased sensitivity to habitat modification, often explaining more variation than non‐thermal traits. Heat tolerances alone explained 24–66% (mean = 38%) of the variation in species responses, and these trends were largely consistent across geographic locations and spatial scales. As habitat modification alters local microclimates, the thermal biology of species will likely play a key role in the reassembly of terrestrial communities.  相似文献   
254.
Annual row crops dominate agriculture around the world and have considerable negative environmental impacts, including significant greenhouse gas emissions. Transformative land‐use solutions are necessary to mitigate climate change and restore critical ecosystem services. Alley cropping (AC)—the integration of trees with crops—is an agroforestry practice that has been studied as a transformative, multifunctional land‐use solution. In the temperate zone, AC has strong potential for climate change mitigation through direct emissions reductions and increases in land‐use efficiency via overyielding compared to trees and crops grown separately. In addition, AC provides climate change adaptation potential and ecological benefits by buffering alley crops to weather extremes, diversifying income to hedge financial risk, increasing biodiversity, reducing soil erosion, and improving nutrient‐ and water‐use efficiency. The scope of temperate AC research and application has been largely limited to simple systems that combine one timber tree species with an annual grain. We propose two frontiers in temperate AC that expand this scope and could transform its climate‐related benefits: (i) diversification via woody polyculture and (ii) expanded use of tree crops for food and fodder. While AC is ready now for implementation on marginal lands, we discuss key considerations that could enhance the scalability of the two proposed frontiers and catalyze widespread adoption.  相似文献   
255.
256.
Degenerate PCR primers were used to amplify a 600-bp conserved gene region for chitin synthases from genomic DNA ofSporothrix schenckii, a dimorphic fungal pathogen of humans and animals. Three chitin synthase gene homologs were amplified as shown by DNA sequence analysis and by Southern blotting experiments. Based on differences among the predicted amino acid sequences of these homologs, each was placed within one of three different chitin synthase classes. Phylogenies constructed with the sequences and the PAUP 3.1.1. program showed thatS. schenckii consistently clustered most closely withNeurospora crassa in each of the three chitin synthase classes. These findings are significant because the phylogenies support by a new method the grouping of the imperfect fungusS. schenckii with the Pyrenomycetes of the Ascomycota.  相似文献   
257.
Grasslands created by grass invasions into shrublands or woodlands followed by fire are now a dominant feature of many seasonally dry environments. In Hawaii Volcanoes National Park, introduced perennial grasses dominate grasslands created by fire in grass‐invaded woodlands. In a previous study, we found that net primary production in these grasslands is substantially lower than in unburned woodlands. Yet, our estimates of annual net nitrogen (N) mineralization showed higher rates in these savannas than in the unburned woodlands, rates that appear to greatly exceed annual N demand by the vegetation. We therefore hypothesized that N should not be limited to the plants growing in these sites. We tested this hypothesis with a 2‐yr fertilization experiment. At peak biomass, we found a 30 percent increase in live biomass in plots with N added and no increase in production with only phosphorus (P) added. N and P together were synergistic, suggesting that co‐limitation or P limitation becomes important when N is more available. Plants responded to added N by increasing individual leaf area and shoot length by over 50 percent. Tissue N was higher with added N; hence, biomass N was substantially higher. Tissue P concentrations declined with N addition but were elevated by P addition despite lack of a growth response to P alone. Overall, N limitation exists despite high annual rates of net N mineralization, and co‐limitation of production by P may occur when N is abundant. Here, asynchrony between plant nutrient demand and N availability may contribute to N limitation.  相似文献   
258.
We have investigated epithelial cell proliferation and the rate of glandular recovery of the ventral prostate (VP) and seminal vesicle (SV) promoted by testosterone replacement (TR) in castration-induced regressed glands. Adult male Wistar rats were castrated and, after 21 days, they were treated with testosterone propionate (4 mg/kg/day). Intact (CT) and castrated rats without TR (CS) were also analysed. VP and SV were processed for histochemistry, morphometric-stereological analysis and immunocytochemistry to determine the PCNA index (PI). After 10 days of TR, the VP weight reached approximately 72% of the CT values, while the SV weight exceeded approximately 17% of the CT values. By the third day of TR, VP and SV presented a mean PI of 34% and 94% for distal region and 14% and 22% for proximal region, respectively. SV also had more luminal cells PCNA-positive than VP, mainly in the distal region. The PI values fell on days 5, 7 and 10, but were still higher than CT. These findings indicate that epithelial cells from involuted SV are more responsive to TR than those from VP when stimulated to proliferate and replace the luminal cell population, suggesting a different mechanism regulating cell proliferation in response to androgenic stimuli.  相似文献   
259.
Shrub willow has great potential as a dedicated bioenergy crop, but commercialization and adoption by growers and end-users will depend upon the identification and selection of high-yielding cultivars with biomass chemistry and quality amenable to conversion to biofuels and bioenergy. In this study, critical traits for biomass production were evaluated among new genotypes of shrub willow produced through hybrid breeding. This study assessed the variation in yield, pest and disease resistance, biomass composition, and wood density in shrub willow, as well as the impact of genotypic and environmental factors on these particular phenotypes. Analysis of clonal genotypes established on two contrasting sites in New York State, Tully and Belleville, showed statistical differences by site for all of the traits. The greatest yield was observed at Belleville, NY, for two cultivars, ‘Fish Creek’ (41 Mg?ha?1) and ‘Onondaga’ (40 Mg?ha?1). Yields of Salix eriocephala genotypes were lowest, and they displayed susceptibility to rust and beetle damage. Variation in cellulose content in the stem biomass was controlled by environmental factors, with the majority of the genotypes displaying greater cellulose content at Belleville compared with Tully. In contrast, wood density was significantly greater at Tully than Belleville, and cellulose content was correlated with wood density. There were no significant correlations between biomass yield and density or any of the composition traits. These trials demonstrate that new genotypes produce improved yield and pest and disease resistance, with diverse compositional traits that can be matched with conversion technologies.  相似文献   
260.
Phloem metabolism and function have to cope with low internal oxygen   总被引:9,自引:0,他引:9  
We have investigated the consequences of endogenous limitations in oxygen delivery for phloem transport in Ricinus communis. In situ oxygen profiles were measured directly across stems of plants growing in air (21% [v/v] oxygen), using a microsensor with a tip diameter of approximately 30 microm. Oxygen levels decreased from 21% (v/v) at the surface to 7% (v/v) in the vascular region and increased again to 15% (v/v) toward the hollow center of the stem. Phloem sap exuding from small incisions in the bark of the stem was hypoxic, and the ATP to ADP ratio (4.1) and energy charge (0.78) were also low. When 5-cm stem segments of intact plants were exposed to zero external oxygen for 90 min, oxygen levels within the phloem decreased to approximately 2% (v/v), and ATP to ADP ratio and adenylate energy charge dropped further to 1.92 and 0.68, respectively. This was accompanied by a marked decrease in the phloem sucrose (Suc) concentration and Suc transport rate, which is likely to be explained by the inhibition of retrieval processes in the phloem. Germinating seedlings were used to analyze the effect of a stepwise decrease in oxygen tension on phloem transport and energy metabolism in more detail. Within the endosperm embedding the cotyledons-next to the phloem loading sites-oxygen decreased from approximately 14% (v/v) in 6-d-old seedlings down to approximately 6% (v/v) in 10-d-old seedlings. This was paralleled by a similar decrease of oxygen inside the hypocotyl. When the endosperm was removed and cotyledons incubated in a 100 mM Suc solution with 21%, 6%, 3%, or 0.5% (v/v) oxygen for 3 h before phloem sap was analyzed, decreasing oxygen tensions led to a progressive decrease in phloem energy state, indicating a partial inhibition of respiration. The estimated ratio of NADH to NAD(+) in the phloem exudate remained low (approximately 0.0014) when oxygen was decreased to 6% and 3% (v/v) but increased markedly (to approximately 0.008) at 0.5% (v/v) oxygen, paralleled by an increase in lactate and ethanol. Suc concentration and translocation decreased when oxygen was decreased to 3% and 0.5% (v/v). Falling oxygen led to a progressive increase in amino acids, especially of alanine, gamma-aminobutyrat, methionine, and isoleucine, a progressive decrease in the C to N ratio, and an increase in the succinate to malate ratio in the phloem. These results show that oxygen concentration is low inside the transport phloem in planta and that this results in adaptive changes in phloem metabolism and function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号