首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4315篇
  免费   315篇
  国内免费   1篇
  2023年   17篇
  2022年   28篇
  2021年   106篇
  2020年   63篇
  2019年   81篇
  2018年   107篇
  2017年   90篇
  2016年   145篇
  2015年   193篇
  2014年   225篇
  2013年   257篇
  2012年   403篇
  2011年   353篇
  2010年   234篇
  2009年   176篇
  2008年   259篇
  2007年   274篇
  2006年   269篇
  2005年   197篇
  2004年   225篇
  2003年   207篇
  2002年   189篇
  2001年   32篇
  2000年   30篇
  1999年   45篇
  1998年   54篇
  1997年   44篇
  1996年   29篇
  1995年   41篇
  1994年   25篇
  1993年   17篇
  1992年   21篇
  1991年   22篇
  1990年   28篇
  1989年   13篇
  1988年   16篇
  1987年   11篇
  1986年   9篇
  1985年   8篇
  1984年   9篇
  1983年   13篇
  1982年   3篇
  1981年   12篇
  1980年   8篇
  1979年   6篇
  1978年   6篇
  1977年   7篇
  1975年   12篇
  1973年   4篇
  1972年   2篇
排序方式: 共有4631条查询结果,搜索用时 109 毫秒
171.
Polyphagous shot hole borer (PSHB), Euwallacea whitfordiodendrus (Schedl) (Coleoptera: Curculionidae, Scolytinae), is an ambrosia beetle that has recently invaded southern California, USA. This beetle successfully attacks and reproduces in a multitude of tree species. As direct control methods are limited, we investigated cultural management options, and sought to determine whether irrigation affects the number of attacks host trees experienced. If irrigation plays a role, cultural control methods could be recommended to managers and growers. Three separate experiments were conducted that monitored the number of attacks on trees with different levels of irrigation. Two experiments examined PSHB attacks in established landscape trees where irrigation was either present or absent. A third experiment used young potted box elder with irrigation controlled with timed emitters. In all three experiments, the level of irrigation received by the trees did not affect the number of attacks. The results suggest that changes in irrigation practices do not affect risk from PSHB attack.  相似文献   
172.
The small molecule SI113 is an inhibitor of the kinase activity of SGK1, a key biological regulator acting on the PI3K/mTOR signal transduction pathway. Several studies demonstrate that this compound is able to strongly restrain cancer growth in vitro and in vivo, alone or in associative antineoplastic treatments, being able to elicit an autophagic response, either cytotoxic or cytoprotective. To elucidate more exhaustively the molecular mechanisms targeted by SI113, we performed activity-based protein profiling (ABPP) proteomic analysis using a kinase enrichment procedure. This technique allowed the identification via mass spectrometry of novel targets of this compound, most of them involved in functions concerning cell motility and cytoskeletal architecture. Using a glioblastoma multiforme, hepatocarcinoma and colorectal carcinoma cell line, we recognized an inhibitory effect of SI113 on cell migration, invading, and epithelial-to-mesenchymal transition. In addition, these cancer cells, when exposed to this compound, showed a remarkable subversion of the cytoskeletal architecture characterized by F-actin destabilization, phospho-FAK delocalization, and tubulin depolimerization. These results were definitely concordant in attributing to SI113 a key role in hindering cancer cell malignancy and, due to its negligible in vivo toxicity, can sustain performing a Phase I clinical trial to employ this drug in associative cancer therapy.  相似文献   
173.
174.
175.
Plant Molecular Biology - Iron and phosphorus are abundant elements in soils but poorly available for plant nutrition. The availability of these two nutrients represents a major constraint for...  相似文献   
176.
Here a differential geometry (DG) representation of protein backbone is explored on the analyses of protein conformational ensembles. The protein backbone is described by curvature, κ, and torsion, τ, values per residue and we propose 1) a new dissimilarity and protein flexibility measurement and 2) a local conformational clustering method. The methods were applied to Ubiquitin and c-Myb-KIX protein conformational ensembles and results show that κ\τ metric space allows to properly judge protein flexibility by avoiding the superposition problem. The dmax measurement presents equally good or superior results when compared to RMSF, especially for the intrinsically unstructured protein. The clustering method is unique as it relates protein global to local dynamics by providing a global clustering solutions per residue. The methods proposed can be especially useful to the analyses of highly flexible proteins. The software written for the analyses presented here is available at https://github.com/AMarinhoSN/FleXgeo for academic usage only.  相似文献   
177.
Impaired angiogenesis leads to long-term complications and is a major contributor of the high morbidity in patients with Diabetes Mellitus (DM). Methylglyoxal (MGO) is a glycolysis byproduct that accumulates in DM and is detoxified by the Glyoxalase 1 (Glo1). Several studies suggest that MGO contributes to vascular complications through mechanisms that remain to be elucidated. In this study we have clarified for the first time the molecular mechanism involved in the impairment of angiogenesis induced by MGO accumulation.Angiogenesis was evaluated in mouse aortic endothelial cells isolated from Glo1-knockdown mice (Glo1KD MAECs) and their wild-type littermates (WT MAECs). Reduction in Glo1 expression led to an accumulation of MGO and MGO-modified proteins and impaired angiogenesis of Glo1KD MAECs. Both mRNA and protein levels of the anti-angiogenic HoxA5 gene were increased in Glo1KD MAECs and its silencing improved both their migration and invasion. Nuclear NF-?B-p65 was increased 2.5-fold in the Glo1KD as compared to WT MAECs. Interestingly, NF-?B-p65 binding to HoxA5 promoter was also 2-fold higher in Glo1KD MAECs and positively regulated HoxA5 expression in MAECs. Consistent with these data, both the exposure to a chemical inhibitor of Glo1 “SpBrBzGSHCp2” (GI) and to exogenous MGO led to the impairment of migration and the increase of HoxA5 mRNA and NF-?B-p65 protein levels in microvascular mouse coronary endothelial cells (MCECs).This study demonstrates, for the first time, that MGO accumulation increases the antiangiogenic factor HoxA5 via NF-?B-p65, thereby impairing the angiogenic ability of endothelial cells.  相似文献   
178.
In the present paper we describe the solution nmr structural analysis and restrained molecular dynamic simulation of the cyclic pentapeptide cyclo-(Pro-Phe-Phe-β-Ala-β-Ala). The conformational analysis carried out in CD3CN and dimethylsulfoxide (DMSO) solutions by nmr spectroscopy was based on interproton distances derived from rotating frame nuclear Overhauser effect spectroscopy spectra and homonuclear coupling constants. A restrained molecular dynamic simulation in vacuo was also performed to build refined molecular models. The molecule is present in both solvent systems as two slowly interconverting conformers, characterized by a cis-trans isomerism around the β-Ala5-Pro1 peptide bond. In CD3CN solution, the conformer with a cis peptide bond is quite similar to that observed in the solid state, while the conformer containing all trans peptide bonds is characterized by an intramolecular hydrogen bond stabilizing a C10- and a C13-ring structure. In DMSO solution, the trans isomer is partly similar to that observed in CD3CN solution while the cis isomer is different from that observed in the solid state. The effect of the solvent in stabilizing different conformations was also investigated in DMSO-CD3CN solvent mixtures. © 1996 John Wiley & Sons, Inc.  相似文献   
179.
Senescence of adipose precursor cells (APC) impairs adipogenesis, contributes to the age‐related subcutaneous adipose tissue (SAT) dysfunction, and increases risk of type 2 diabetes (T2D). First‐degree relatives of T2D individuals (FDR) feature restricted adipogenesis, reflecting the detrimental effects of APC senescence earlier in life and rendering FDR more vulnerable to T2D. Epigenetics may contribute to these abnormalities but the underlying mechanisms remain unclear. In previous methylome comparison in APC from FDR and individuals with no diabetes familiarity (CTRL), ZMAT3 emerged as one of the top‐ranked senescence‐related genes featuring hypomethylation in FDR and associated with T2D risk. Here, we investigated whether and how DNA methylation changes at ZMAT3 promote early APC senescence. APC from FDR individuals revealed increases in multiple senescence markers compared to CTRL. Senescence in these cells was accompanied by ZMAT3 hypomethylation, which caused ZMAT3 upregulation. Demethylation at this gene in CTRL APC led to increased ZMAT3 expression and premature senescence, which were reverted by ZMAT3 siRNA. Furthermore, ZMAT3 overexpression in APC determined senescence and activation of the p53/p21 pathway, as observed in FDR APC. Adipogenesis was also inhibited in ZMAT3‐overexpressing APC. In FDR APC, rescue of ZMAT3 methylation through senolytic exposure simultaneously downregulated ZMAT3 expression and improved adipogenesis. Interestingly, in human SAT, aging and T2D were associated with significantly increased expression of both ZMAT3 and the P53 senescence marker. Thus, DNA hypomethylation causes ZMAT3 upregulation in FDR APC accompanied by acquisition of the senescence phenotype and impaired adipogenesis, which may contribute to FDR predisposition for T2D.  相似文献   
180.
AimTo identify proteins with which FolBp1 may interact within lipid rafts in tissue derived from embryonic orofacial tissue.MethodsA yeast two-hybrid screen of a cDNA library, derived from orofacial tissue from gestational day 11 to 13 mouse embryos, was conducted.Key findingsUsing the full-length FolBp1 protein as bait, two proteins that bind FolBp1 were identified, Bat2d, and a fibronectin type III-containing domain protein. Results were confirmed by glutathione S-transferase pull-down assays.SignificanceAs a component of membrane lipid raft protein complexes, these binding proteins may represent “helper” or chaperone proteins that associate with FolBp1 in order to facilitate the transport of folate across the plasma membrane. The protein–protein interactions detected, while limited in number, may be critical in mediating the role of FolBp1 in folate transport, particularly in the developing embryo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号