首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1400篇
  免费   112篇
  2023年   4篇
  2022年   20篇
  2021年   32篇
  2020年   19篇
  2019年   32篇
  2018年   38篇
  2017年   28篇
  2016年   46篇
  2015年   80篇
  2014年   80篇
  2013年   103篇
  2012年   122篇
  2011年   137篇
  2010年   54篇
  2009年   83篇
  2008年   99篇
  2007年   94篇
  2006年   68篇
  2005年   58篇
  2004年   60篇
  2003年   62篇
  2002年   63篇
  2001年   15篇
  2000年   12篇
  1999年   14篇
  1998年   15篇
  1997年   6篇
  1996年   4篇
  1995年   2篇
  1994年   5篇
  1993年   5篇
  1992年   8篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   5篇
  1987年   6篇
  1986年   2篇
  1985年   2篇
  1984年   4篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1978年   4篇
  1977年   3篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有1512条查询结果,搜索用时 15 毫秒
941.
Smac mimetics (SMs) comprise a class of small molecules that target members of the inhibitor of apoptosis family of pro-survival proteins, whose expression in cancer cells hinders the action of conventional chemotherapeutics. Herein, we describe the activity of SM83, a newly synthesised dimeric SM, in two cancer ascites models: athymic nude mice injected intraperitoneally with IGROV-1 human ovarian carcinoma cells and immunocompetent BALB/c mice injected with murine Meth A sarcoma cells. SM83 rapidly killed ascitic IGROV-1 and Meth A cells in vivo (prolonging mouse survival), but was ineffective against the same cells in vitro. IGROV-1 cells in nude mice were killed within the ascites by a non-apoptotic, tumour necrosis factor (TNF)-dependent mechanism. SM83 administration triggered a rapid inflammatory event characterised by host secretion of TNF, interleukin-1β and interferon-γ. This inflammatory response was associated with the reversion of the phenotype of tumour-associated macrophages from a pro-tumoural M2- to a pro-inflammatory M1-like state. SM83 treatment was also associated with a massive recruitment of neutrophils that, however, was not essential for the antitumoural activity of this compound. In BALB/c mice bearing Meth A ascites, SM83 treatment was in some cases curative, and these mice became resistant to a second injection of cancer cells, suggesting that they had developed an adaptive immune response. Altogether, these results indicate that, in vivo, SM83 modulates the immune system within the tumour microenvironment and, through its pro-inflammatory action, leads cancer cells to die by necrosis with the release of high-mobility group box-1. In conclusion, our work provides evidence that SMs could be more therapeutically active than expected by stimulating the immune system.  相似文献   
942.
Patients with chronic granulomatous disease (CGD) lack generation of reactive oxygen species (ROS) through the phagocyte NADPH oxidase NOX2. CGD is an immune deficiency that leads to frequent infections with certain pathogens; this is well documented for S. aureus and A. fumigatus, but less clear for mycobacteria. We therefore performed an extensive literature search which yielded 297 cases of CGD patients with mycobacterial infections; M. bovis BCG was most commonly described (74%). The relationship between NOX2 deficiency and BCG infection however has never been studied in a mouse model. We therefore investigated BCG infection in three different mouse models of CGD: Ncf1 mutants in two different genetic backgrounds and Cybb knock-out mice. In addition, we investigated a macrophage-specific rescue (transgenic expression of Ncf1 under the control of the CD68 promoter). Wild-type mice did not develop severe disease upon BCG injection. In contrast, all three types of CGD mice were highly susceptible to BCG, as witnessed by a severe weight loss, development of hemorrhagic pneumonia, and a high mortality (∼50%). Rescue of NOX2 activity in macrophages restored BCG resistance, similar as seen in wild-type mice. Granulomas from mycobacteria-infected wild-type mice generated ROS, while granulomas from CGD mice did not. Bacterial load in CGD mice was only moderately increased, suggesting that it was not crucial for the observed phenotype. CGD mice responded with massively enhanced cytokine release (TNF-α, IFN-γ, IL-17 and IL-12) early after BCG infection, which might account for severity of the disease. Finally, in wild-type mice, macrophages formed clusters and restricted mycobacteria to granulomas, while macrophages and mycobacteria were diffusely distributed in lung tissue from CGD mice. Our results demonstrate that lack of the NADPH oxidase leads to a markedly increased severity of BCG infection through mechanisms including increased cytokine production and impaired granuloma formation.  相似文献   
943.
944.
Photosynthetic eukaryotes require the proper assembly of photosystem II (PSII) in order to strip electrons from water and fuel carbon fixation reactions. In Arabidopsis thaliana, one of the PSII subunits (CP43/PsbC) was suggested to be assembled into the PSII complex via its interaction with an auxiliary protein called Low PSII Accumulation 2 (LPA2). However, the original articles describing the role of LPA2 in PSII assembly have been retracted. To investigate the function of LPA2 in the model organism for green algae, Chlamydomonas reinhardtii, we generated knockout lpa2 mutants by using the CRISPR-Cas9 target-specific genome editing system. Biochemical analyses revealed the thylakoidal localization of LPA2 protein in the wild type (WT), whereas lpa2 mutants were characterized by a drastic reduction in the levels of D1, D2, CP47 and CP43 proteins. Consequently, reduced PSII supercomplex accumulation, chlorophyll content per cell, PSII quantum yield and photosynthetic oxygen evolution were measured in the lpa2 mutants, leading to the almost complete impairment of photoautotrophic growth. Pulse-chase experiments demonstrated that the absence of LPA2 protein caused reduced PSII assembly and reduced PSII turnover. Taken together, our data indicate that, in C. reinhardtii, LPA2 is required for PSII assembly and proper function.  相似文献   
945.
946.
Pathogenesis by Bacillus anthracis requires coordination between two distinct activities: plasmid-encoded virulence factor expression (which protects vegetative cells from immune surveillance during outgrowth and replication) and chromosomally encoded sporulation (required only during the final stages of infection). Sporulation is regulated by at least five sensor histidine kinases that are activated in response to various environmental cues. One of these kinases, BA2291, harbors a sensor domain that has ~35% sequence identity with two plasmid proteins, pXO1-118 and pXO2-61. Because overexpression of pXO2-61 (or pXO1-118) inhibits sporulation of B. anthracis in a BA2291-dependent manner, and pXO2-61 expression is strongly up-regulated by the major virulence gene regulator, AtxA, it was suggested that their function is to titrate out an environmental signal that would otherwise promote untimely sporulation. To explore this hypothesis, we determined crystal structures of both plasmid-encoded proteins. We found that they adopt a dimeric globin fold but, most unusually, do not bind heme. Instead, they house a hydrophobic tunnel and hydrophilic chamber that are occupied by fatty acid, which engages a conserved arginine and chloride ion via its carboxyl head group. In vivo, these domains may therefore recognize changes in fatty acid synthesis, chloride ion concentration, and/or pH. Structure-based comparisons with BA2291 suggest that it binds ligand and dimerizes in an analogous fashion, consistent with the titration hypothesis. Analysis of newly sequenced bacterial genomes points to the existence of a much broader family of non-heme, globin-based sensor domains, with related but distinct functionalities, that may have evolved from an ancestral heme-linked globin.  相似文献   
947.
Over the past 20 years, survival rates of T‐cell acute lymphoblastic leukemia (T‐ALL) patients have improved, mainly because of advances in polychemotherapy protocols. Despite these improvements, we still need novel and less toxic treatment strategies targeting aberrantly activated signaling networks which increase proliferation, survival, and drug resistance of T‐ALL cells. One such network is represented by the phosphatidylinositol 3‐kinase (PI3K)/Akt axis. PI3K inhibitors have displayed some promising effects in preclinical models of T‐ALL. Here, we have analyzed the therapeutic potential of the Akt inhibitor, triciribine, in T‐ALL cell lines. Triciribine caused cell cycle arrest and caspase‐dependent apoptosis. Western blots demonstrated a dose‐dependent dephosphorylation of Akt1/Akt2, and of mammalian target of rapamycin complex 1 downstream targets in response to triciribine. Triciribine induced autophagy, which could be interpreted as a defensive mechanism, because an autophagy inhibitor (chloroquine) increased triciribine‐induced apoptosis. Triciribine synergized with vincristine, a chemotherapeutic drug employed for treating T‐ALL patients, and targeted the side population of T‐ALL cell lines, which might correspond to leukemia initiating cells. Our findings indicate that Akt inhibition, either alone or in combination with chemotherapeutic drugs, may serve as an efficient treatment towards T‐ALL cells requiring upregulation of this signaling pathway for their proliferation and survival. J. Cell. Physiol. 226: 822–831, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   
948.
Recruitment is a principal controlling factor in population dynamics of marine species. In marine invertebrates with a planktonic larval stage, such as echinoids, recruitment is assured by larval supply, settlement and juvenile survival. Larval supply and juvenile survival are affected by a wide range of factors, including temperature, presence of predators, quality and quantity of food. Echinoid larval settlement is mainly conditioned by the finding of a suitable substrate to metamorphose. The sea urchins Arbacia lixula and Paracentrotus lividus are considered key species of the Mediterranean infralittoral rocky shores. At high densities, the grazing activity of both species can produce and maintain barren grounds, a particular habitat condition characterized by extremely low cover values of erect algae with high presence of naked substrates and encrusting corallinales, poor in biodiversity and ecosystem functions. We tested the role of different settlement substrates on the metamorphosis competent larvae of the two species. Furthermore, from our larval rearing trails we were able to identify strong temperature effects on larval development of the two species. P. lividus and A. lixula larvae have been reared at 18 °C but for the second species it was necessary to use higher temperatures (22 °C) to perform settlement experiments, as in the 18 °C set all larvae died in the first week. Both species larvae have been fed Cricosphaera elongata. Metamorphosis of competent larvae has been induced using different substrates: naked stones, Lithophyllum incrustans, Stypocaulon scoparium, Corallina elongata, turf forming algae and Posidonia oceanica. For each species, two larval batches were used for settlement experiments; for each larval batch two replicates/substrates were set up. No differences in the rate of metamorphosis on any of the tested substrates were observed for P. lividus, while A. lixula showed to prefer naked stones and encrusting coralline algae Considering that A. lixula population growth may trigger barren extension on rocky shores, this may lead to a positive feedback between barren extension and A. lixula population density. Furthermore, our results suggest that the predicted rise in seawater temperature may favor A. lixula larval survival and inhibit P. lividus. Combining information on temperature tolerance with other sources of information for these species in the Mediterranean, it is possible to develop a conceptual model of the interaction between the two species and the alternative state of their habitats.  相似文献   
949.
Natural killer cells are important players of the innate immunity. In humans, they express HLA-class I-specific inhibitory receptors including the allotypic-specific KIR and various activating receptors. In most instances, in an autologous setting NK cells do not kill self cells. In contrast, in an allogeneic setting as the haploidentical hematopoietic stem cell transplantation to cure high risk leukemias, donor-derived NK cells may express inhibitory KIR that are not engaged by the HLA-class I alleles (KIR ligands) expressed by recipient cells. Such "alloreactive" NK cells may be responsible for the eradication of leukemia blasts escaping the preparative regimen, residual host dendritic cells and T lymphocytes, thus preventing leukemia relapse, GvHD and graft rejection, respectively. These NK-mediated effects result in a sharp improvement of the estimated 5 years survival.  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号