The "sterol-sensing domain" (SSD) is conserved across phyla and is present in several membrane proteins, such as Patched (a Hedgehog receptor) and NPC-1 (the protein defective in Niemann-Pick type C1 disease). The role of the SSD is perhaps best understood from the standpoint of its involvement in cholesterol homeostasis. This article discusses how the SSD appears to function as a regulatory domain involved in linking vesicle trafficking and protein localization with such varied processes as cholesterol homeostasis, cell signalling and cytokinesis. 相似文献
Smooth muscle cells (SMCs) usually express a contractile phenotype in the healthy aorta. However, aortic SMCs have the ability to undergo profound changes in phenotype in response to changes in their extracellular environment, as occurs in ascending thoracic aortic aneurysms (ATAA). Accordingly, there is a pressing need to quantify the mechanobiological effects of these changes at single cell level. To address this need, we applied Traction Force Microscopy (TFM) on 759 cells coming from three primary healthy (AoPrim) human SMC lineages and three primary aneurysmal (AnevPrim) human SMC lineages, from age and gender matched donors. We measured the basal traction forces applied by each of these cells onto compliant hydrogels of different stiffness (4, 8, 12, 25 kPa). Although the range of force generation by SMCs suggested some heterogeneity, we observed that: 1. the traction forces were significantly larger on substrates of larger stiffness; 2. traction forces in AnevPrim were significantly higher than in AoPrim cells. We modelled computationally the dynamic force generation process in SMCs using the motor-clutch model and found that it accounts well for the stiffness-dependent traction forces. The existence of larger traction forces in the AnevPrim SMCs were related to the larger size of cells in these lineages. We conclude that phenotype changes occurring in ATAA, which were previously known to reduce the expression of elongated and contractile SMCs (rendering SMCs less responsive to vasoactive agents), tend also to induce stronger SMCs. Future work aims at understanding the causes of this alteration process in aortic aneurysms.
Plant protection spray treatments may expose non-target organisms to pesticides. In the pesticide registration procedure, the honey bee represents one of the non-target model species for which the risk posed by pesticides must be assessed on the basis of the hazard quotient (HQ). The HQ is defined as the ratio between environmental exposure and toxicity. For the honey bee, the HQ calculation is not consistent because it corresponds to the ratio between the pesticide field rate (in mass of pesticide/ha) and LD50 (in mass of pesticide/bee). Thus, in contrast to all other species, the HQ can only be interpreted empirically because it corresponds to a number of bees/ha. This type of HQ calculation is due to the difficulty in transforming pesticide field rates into doses to which bees are exposed. In this study, we used a pragmatic approach to determine the apparent exposure surface area of honey bees submitted to pesticide treatments by spraying with a Potter-type tower. The doses received by the bees were quantified by very efficient chemical analyses, which enabled us to determine an apparent surface area of 1.05 cm2/bee. The apparent surface area was used to calculate the exposure levels of bees submitted to pesticide sprays and then to revisit the HQ ratios with a calculation mode similar to that used for all other living species. X-tomography was used to assess the physical surface area of a bee, which was 3.27 cm2/bee, and showed that the apparent exposure surface was not overestimated. The control experiments showed that the toxicity induced by doses calculated with the exposure surface area was similar to that induced by treatments according to the European testing procedure. This new approach to measure risk is more accurate and could become a tool to aid the decision-making process in the risk assessment of pesticides. 相似文献
Disassortative mating is a powerful mechanism stabilizing polymorphisms at sex chromosomes and other supergenes. The Alpine silver ant, Formica selysi, has two forms of social organization—single‐queen and multiple‐queen colonies—determined by alternate haplotypes at a large supergene. Here, we explore whether mate preference contributes to the maintenance of the genetic polymorphism at the social supergene. With mate choice experiments, we found that females and males mated randomly with respect to social form. Moreover, queens were able to produce offspring irrespective of whether they had mated with a male from the same or the alternative social form. Yet, females originating from single‐queen colonies were more fertile, suggesting that they may be more successful at independent colony founding. We conclude that the pattern of asymmetric assortative mating documented from mature F. selysi colonies in the field is not caused by mate preferences or major genetic incompatibilities between social forms. More generally, we found no evidence that disassortative mate preference contributes to the maintenance of polymorphism at this supergene controlling ant social organization. 相似文献
The emergence of mosquitoes that can avoid indoor-deployed interventions, such as treated bed nets and indoor residual spraying, threatens the mainstay of malaria control in Zambia. Furthermore, the requirement for high coverage of these tools poses operational challenges. Spatial repellents are being assessed to supplement these vector control tools, but limitations exist in the residual effect of the repellent and the need for external power or heat for diffusion of the volatiles. A semi-field evaluation of a novel controlled release spatial repellent device (CRD) was conducted in Macha, Zambia. These devices emanate metofluthrin with no need for external power. Devices were deployed in huts within the semi-field system (SFS). Female Anopheles gambiae sensu stricto released within the SFS were trapped overnight by light traps and collected by aspiration the next morning inside and outside of huts to determine the extent of mosquito repellency and the impact on host-seeking and survival. Experiments studied the impact of number of devices as well as the presence of hut occupants. The study was complemented with numerical methods based on computational fluid dynamics to simulate spatial distribution of metofluthrin. Presence of CRDs was associated with significant reductions in indoor counts of mosquitoes, regardless of whether huts were occupied or not. Repellency ranged from 15 to 60% compared to huts with no devices. Reducing the number of devices from 16 to 4 had little impact on repellency. When huts were occupied, indoor mosquito host-seeking was higher in the presence of CRDs, whilst survival was significantly reduced. This study demonstrated that deployment of as few as four CRDs within a hut was associated with reduced indoor mosquito densities. As would be expected, presence of occupants within huts, resulted in greater indoor catches (both with and without devices). The increased indoor mosquito host-seeking and mortality in huts when devices were present may be explained by the excito-repellency activity of metofluthrin. These semi-field experiments provide preliminary data on the utility of CRD spatial repellents to reduce indoor densities of An. gambiae mosquitoes. Studies will further investigate the impact of CRDs on mosquito behaviour as well as epidemiological protective efficacy. 相似文献
The widespread impact of avian influenza viruses not only poses risks to birds, but also to humans. The viruses spread from birds to humans and from human to human In addition, mutation in the primary strain will increase the infectiousness of avian influenza. We developed a mathematical model of avian influenza for both bird and human populations. The effect of half-saturated incidence on transmission dynamics of the disease is investigated. The half-saturation constants determine the levels at which birds and humans contract avian influenza. To prevent the spread of avian influenza, the associated half-saturation constants must be increased, especially the half-saturation constant Hm for humans with mutant strain. The quantity Hm plays an essential role in determining the basic reproduction number of this model. Furthermore, by decreasing the rate βm at which human-to-human mutant influenza is contracted, an outbreak can be controlled more effectively. To combat the outbreak, we propose both pharmaceutical (vaccination) and non-pharmaceutical (personal protection and isolation) control methods to reduce the transmission of avian influenza. Vaccination and personal protection will decrease βm, while isolation will increase Hm. Numerical simulations demonstrate that all proposed control strategies will lead to disease eradication; however, if we only employ vaccination, it will require slightly longer to eradicate the disease than only applying non-pharmaceutical or a combination of pharmaceutical and non-pharmaceutical control methods. In conclusion, it is important to adopt a combination of control methods to fight an avian influenza outbreak. 相似文献
Amongst post‐Li‐ion battery technologies, lithium–sulfur (Li–S) batteries have captured an immense interest as one of the most appealing devices from both the industrial and academia sectors. The replacement of conventional liquid electrolytes with solid polymer electrolytes (SPEs) enables not only a safer use of Li metal (Li°) anodes but also a flexible design in the shape of Li–S batteries. However, the practical implementation of SPEs‐based all‐solid‐state Li–S batteries (ASSLSBs) is largely hindered by the shuttling effect of the polysulfide intermediates and the formation of dendritic Li° during the battery operation. Herein, a fluorine‐free noble salt anion, tricyanomethanide [C(CN)3?, TCM?], is proposed as a Li‐ion conducting salt for ASSLSBs. Compared to the widely used perfluorinated anions {e.g., bis(trifluoromethanesulfonyl)imide anion, [N(SO2CF3)2)]?, TFSI?}, the LiTCM‐based electrolytes show decent ionic conductivity, good thermal stability, and sufficient anodic stability suiting the cell chemistry of ASSLSBs. In particular, the fluorine‐free solid electrolyte interphase layer originating from the decomposition of LiTCM exhibits a good mechanical integrity and Li‐ion conductivity, which allows the LiTCM‐based Li–S cells to be cycled with good rate capability and Coulombic efficiency. The LiTCM‐based electrolytes are believed to be the most promising candidates for building cost‐effective and high energy density ASSLSBs in the near future. 相似文献
Temporally variable and reciprocal subsidies between ecosystems are ubiquitous. These spatial flows can generate a suite of
direct and indirect effects in local and meta-ecosystems. The focus of most subsidy research, however, has been on the response
of consumers in recipient ecosystems to constant subsidies over very short or very long time scales. We derive a meta-ecosystem
model to explicitly consider the dynamic feedbacks between local ecosystems coupled through reciprocal pulsed subsidies. We
predict oscillating reinforcing and dampening effects of reciprocal pulsed herbivore flows. Maximum reinforcing effects between
reciprocal pulsed herbivore flows occur when these flows are in phase with the dynamics of neighboring predators. This prediction
is robust to a range of pulse quantities and frequencies. Reciprocal pulsed herbivore subsidies lead to spatial and temporal
variability in the strength of trophic cascades in local and meta-ecosystems but these cascading effects are the strongest
when reciprocal pulsed subsidies are temporally concentrated. When predators demonstrate a behavioral response to prey abundance,
reciprocal pulsed subsidies dampen the strength of local trophic cascades but lead to strong trophic cascades across local
ecosystems. The timing of reciprocal pulsed subsidies is a critical component that determines the cascading effects of spatial
flows. We show that spatial and temporal variabilities in resources and consumers can have a significant influence on the
strength of cascading trophic interactions; therefore, our ability to detect and understand trophic cascades may depend on
the scale of inquiry of ecological studies. 相似文献
The biphenyl dioxygenase of Burkholderia xenovorans LB400 is a multicomponent Rieske-type oxygenase that catalyzes the dihydroxylation of biphenyl and many polychlorinated biphenyls (PCBs). The structural bases for the substrate specificity of the enzyme's oxygenase component (BphAELB400) are largely unknown. BphAEp4, a variant previously obtained through directed evolution, transforms several chlorobiphenyls, including 2,6-dichlorobiphenyl, more efficiently than BphAELB400, yet differs from the parent oxygenase at only two positions: T335A/F336M. Here, we compare the structures of BphAELB400 and BphAEp4 and examine the biochemical properties of two BphAELB400 variants with single substitutions, T335A or F336M. Our data show that residue 336 contacts the biphenyl and influences the regiospecificity of the reaction, but does not enhance the enzyme's reactivity toward 2,6-dichlorobiphenyl. By contrast, residue 335 does not contact biphenyl but contributes significantly to expansion of the enzyme's substrate range. Crystal structures indicate that Thr335 imposes constraints through hydrogen bonds and nonbonded contacts to the segment from Val320 to Gln322. These contacts are lost when Thr is replaced by Ala, relieving intramolecular constraints and allowing for significant movement of this segment during binding of 2,6-dichlorobiphenyl, which increases the space available to accommodate the doubly ortho-chlorinated congener 2,6-dichlorobiphenyl. This study provides important insight about how Rieske-type oxygenases can expand substrate range through mutations that increase the plasticity and/or mobility of protein segments lining the catalytic cavity. 相似文献
The aim of this study was to determine a low disease activity threshold - a 28-joint disease activity score (DAS28) value - for the decision to maintain unchanged disease-modifying antirheumatic drug (DMARD) treatment in rheumatoid arthritis patients, based on expert opinion.
Methods
Nine hundred and sixty-seven case scenarios with various levels for each component of the DAS28 (resulting in a disease activity score between 2 and 3.2) were presented to 44 panelists. For each scenario, panelists had to decide whether or not DMARD treatment (excluding steroids) could be maintained unchanged. In each scenario, for decision, the participants were given the DAS28 parameters, without knowledge of the resultant DAS28. The relationship between panelists' decision, DAS28 value, and components of the score were analysed by multiple logistic regression analysis. Each panelist analysed 160 randomised scenarios. Intra-rater and inter-rater reproducibility were assessed.
Results
Forty-four panelists participated in the study. Inter-panelist agreement was good (κ = 0.63; 95% confidence interval = 0.61 to 0.65). Intra-panelist agreement was excellent (κ = 0.87; 95% confidence interval = 0.82 to 0.92). Quasi-perfect agreement was observed for DAS28 ≤ 2.4, less pronounced between 2.5 and 2.9, and almost no agreement for DAS28 > 3.0. For values below 2.5, panelists agreed to maintain unchanged DMARDs; for values above 2.5, discrepancies occurred more frequently as the DAS28 value increased. Multivariate analysis confirmed the relationship between panelist's decision, DAS28 value and components of the DAS28. Between DAS28 of 2.4 and 3.2, a major determinant for panelists' decision was swollen joint count. Female and public practice physicians decided more often to maintain treatment unchanged.
Conclusions
As a conclusion, panelists suggested that in clinical practice there is no need to change DMARD treatment in rheumatoid arthritis patients with DAS28 ≤ 2.4. 相似文献