首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   31篇
  2022年   2篇
  2020年   2篇
  2019年   2篇
  2018年   6篇
  2017年   3篇
  2016年   6篇
  2015年   8篇
  2014年   8篇
  2013年   10篇
  2012年   8篇
  2011年   12篇
  2010年   5篇
  2009年   7篇
  2008年   5篇
  2007年   17篇
  2006年   7篇
  2005年   10篇
  2004年   9篇
  2003年   10篇
  2002年   12篇
  2001年   5篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   7篇
  1991年   3篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1982年   3篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有197条查询结果,搜索用时 453 毫秒
101.
Maintenance of muscle mass is not dependent on the calcineurin-NFAT pathway   总被引:3,自引:0,他引:3  
In this study, the role of the calcineurinpathway in skeletal muscle atrophy and atrophy-reducing interventionswas investigated in rat soleus muscles. Because calcineurin has beensuggested to be involved in skeletal and cardiac muscle hypertrophy, we hypothesized that blocking calcineurin activity would eliminate beneficial effects of interventions that maintain muscle mass in theface of atrophy-inducing stimuli. Hindlimb suspension and spinal cordtransection were used to induce atrophy, and intermittent reloading andexercise were used to reduce atrophy. Cyclosporin (CsA, 25 mg · kg1 · day1) wasadministered to block calcineurin activity. Soleus muscles were studied14 days after the onset of atrophy. CsA administration did not inhibitthe beneficial effects of the two muscle-maintaining interventions, nordid it change muscle mass in control or atrophied muscles, suggestingthat calcineurin does not play a role in regulating muscle size duringatrophy. However, calcineurin abundance was increased in atrophiedsoleus muscles, and this was associated with nuclear localization ofNFATc1 (a nuclear factor of activated T cells). Therefore, resultssuggest that calcineurin may be playing opposing roles during skeletalmuscle atrophy and under muscle mass-maintaining conditions.

  相似文献   
102.
103.
ClpB belongs to the Hsp100/Clp ATPase family. Whereas a homologue of ClpB, ClpA, interacts with and stimulates the peptidase ClpP, ClpB does not associate with peptidases and instead cooperates with DnaK/DnaJ/GrpE in an efficient reactivation of severely aggregated proteins. The major difference between ClpA and ClpB is located in the middle sequence region (MD) that is much longer in ClpB than in ClpA and contains several segments of coiled-coil-like heptad repeats. The function of MD is unknown. We purified the isolated MD fragment of ClpB from Escherichia coli (residues 410-570). Circular dichroism (CD) detected a high population of alpha-helical structure in MD. Temperature-induced changes in CD showed that MD is a thermodynamically stable folding domain. Sedimentation equilibrium showed that MD is monomeric in solution. We produced four truncated variants of ClpB with deletions of the following heptad-repeat-containing regions in MD: 417-455, 456-498, 496-530, and 531-569. We found that the removal of each heptad-repeat region within MD strongly inhibited the oligomerization of ClpB, which produced low ATPase activity of the truncated ClpB variants as well as their low chaperone activity in vivo. Only one ClpB variant (Delta417-455) could partially complement the growth defect of the clpB-null E. coli strain at 50 degrees C. Our results show that heptad repeats in MD play an important role in stabilization of the active oligomeric form of ClpB. The heptad repeats are likely involved in stabilization of an intra-MD helical bundle rather than an intersubunit coiled coil.  相似文献   
104.
Strong selection from herbicides has led to the rapid evolution of herbicide‐resistant weeds, greatly complicating weed management efforts worldwide. In particular, overreliance on glyphosate, the active ingredient in RoundUp®, has spurred the evolution of resistance to this herbicide in ≥40 species. Previously, we reported that Conyza canadensis (horseweed) has evolved extreme resistance to glyphosate, surviving at 40× the original 1× effective dosage. Here, we tested for underlying fitness effects of glyphosate resistance to better understand whether resistance could persist indefinitely in this self‐pollinating, annual weed. We sampled seeds from a single maternal plant (“biotype”) at each of 26 horseweed populations in Iowa, representing nine susceptible biotypes (S), eight with low‐level resistance (LR), and nine with extreme resistance (ER). In 2016 and 2017, we compared early growth rates and bolting dates of these biotypes in common garden experiments at two sites near Ames, Iowa. Nested ANOVAs showed that, as a group, ER biotypes attained similar or larger rosette size after 6 weeks compared to S or LR biotypes, which were similar to each other in size. Also, ER biotypes bolted 1–2 weeks earlier than S or LR biotypes. These fitness‐related traits also varied among biotypes within the same resistance category, and time to bolting was inversely correlated with rosette size across all biotypes. Disease symptoms affected 40% of all plants in 2016 and 78% in 2017, so we did not attempt to measure lifetime fecundity. In both years, the frequency of disease symptoms was greatest in S biotypes and similar in LR versus ER biotypes. Overall, our findings indicate there are no early growth penalty and possibly no lifetime fitness penalty associated with glyphosate resistance, including extremely strong resistance. We conclude that glyphosate resistance is likely to persist in horseweed populations, with or without continued selection pressure from exposure to glyphosate.  相似文献   
105.
Transfer of herbicide resistance genes between crops and weeds is relatively well documented; however, far less information exists for weed-to-weed interactions. The hybridization between the weedy diploids Conyza canadensis (2n = 18) and C. ramosissima (2n = 18) was investigated by monitoring transmission of the allele conferring resistance to N-phosphonomethyl glycine (glyphosate). In a multivariate quantitative trait analysis, we described the phylogenic relationship of the plants, whereas we tested seed viability to assess potential postzygotic reproductive barriers (PZRB) thus affecting the potential establishment of hybrid populations in the wild. When inflorescences were allowed to interact freely, approximately 3% of C. ramosissima or C. canadensis ova were fertilized by pollen of the opposing species and produced viable seeds; >95% of the ova were fertilized under no-pollen competition conditions (emasculation). The interspecific Conyza hybrid ( ) demonstrated an intermediate phenotype between the parents but superior resistance to glyphosate compared to the resistant C. canadensis parent. Inheritance of glyphosate resistance in the selfed ( ) followed the partially dominant nuclear, single-gene model; backcrosses confirmed successful introgression of the resistance allele to either parent. Negligible PZRB were observed in the hybrid progenies, confirming fertility of the C. canadensis × C. ramosissima nothotaxa. The implications of introgressive hybridization for herbicide resistance management and taxonomy of Conyza are discussed.  相似文献   
106.
Recent data showed that p53 stimulates the expression of genes encoding not only pro- but also antioxidant enzymes. It was suggested that antioxidant genes could be induced under physiologic levels of stress while the prooxidant ones respond to higher level of stress. Results presented in this article illustrate an additional degree of complexity. We show that the expression of Haeme-oxygenase 1 (HO-1), a stress-inducible gene that codes for an enzyme having antioxidant properties, is stimulated in a p53-dependent manner in the thymus and spleen of irradiated mice. We prove that HO-1 is a direct p53 target gene by showing that the p53RE identified within human and mouse genes is specifically bound by p53. The threshold of irradiation dose required to induce a significant response of HO-1 in the lymphoid organs of the irradiated mice is higher than that for Waf1/p21 that encodes an universal inhibitor of cell cycle. Moreover, induction of HO-1 occurs later than that of Waf1/p21. Finally, the higher stimulation of HO-1 is reached when Waf1/p21 stimulation starts to decrease.  相似文献   
107.
Immunostimulatory oligodeoxynucleotides (ODN) containing cytosine-guanine (CpG) motifs are powerful stimulators of innate as well as adaptive immune responses, exerting their activity through triggering of the Toll-like receptor 9. We have previously shown that encapsulation in liposomal nanoparticles (LN) enhances the immunostimulatory activity of CpG ODN (LN-CpG ODN) (Mui et al. in J Pharmacol Exp Ther 298:1185, 2001). In this work we investigate the effect of encapsulation on the immunopotency of subcutaneously (s.c.) administered CpG ODN with regard to activation of innate immune cells as well as its ability to act as a vaccine adjuvant with tumor-associated antigens (TAAs) to induce antigen (Ag)-specific, adaptive responses and anti-tumor activity in murine models. It is shown that encapsulation specifically targets CpG ODN for uptake by immune cells. This may provide the basis, at least in part, for the significantly enhanced immunostimulatory activity of LN-CpG ODN, inducing potent innate (as judged by immune cell activation and plasma cytokine/chemokine levels) and adaptive, Ag-specific (as judged by MHC tetramer positive T lymphocytes, IFN-γ secretion and cytotoxicity) immune responses. Finally, in efficacy studies, it is shown that liposomal encapsulation enhances the ability of CpG ODN to adjuvanate adaptive immune responses against co-administered TAAs after s.c. immunization, inducing effective anti-tumor activity against both model and syngeneic tumor Ags in murine tumor models of thymoma and melanoma.  相似文献   
108.
When a forager encounters an unfamiliar type of food, it mustdecide whether to eat it and risk being poisoned or avoid eatingit and risk forfeiting a potentially valuable resource. Birdstypically respond to such situations with "dietary wariness";they show a transient aversion to approaching new food (neophobia),and many individuals also show a much longer lasting reluctanceto consume the new food (dietary conservatism), even once neophobiahas waned. Very little is known about how these processes, togethertermed "wariness," are controlled. We therefore present a seriesof experiments investigating how wariness of novel foods indomestic chicks, Gallus gallus domesticus, can be deactivatedand reactivated by different experiences of colored foods, varyingin their degree of novelty and palatability. We found that priorexperience of a single novel color of palatable chick crumbswas sufficient to deactivate both neophobia and dietary conservatismof any other novel color of crumbs tested. Relatively littleprior experience of a novel training food was needed to deactivateneophobia, after which the birds would peck at any other novelfood. In contrast, much more extensive experience of eatinga novel training food was needed before the birds would incorporateother novel foods into their diet. Chicks needed direct physicalcontact with the training food before they overcame their warinessto eat another novel food. However, observational learning wassufficient to encourage them to peck at the food (overcomingtheir neophobia). Reinstating wariness was much more easilyachieved than its deactivation. We discuss these surprisingresults in relation to the foraging behavior of wild and domesticbirds.  相似文献   
109.
A series of 4-amino-6-piperazin-1-yl-pyrimidine-5-carbaldehyde oximes has been discovered and developed as potent FLT3 tyrosine kinase inhibitors. The series exhibited potent antiproliferative activity against both an FLT3 ITD-mutated human leukemic cell line as well as a wild-type FLT3 BaF(3) expressed cell line. The structure-activity relationship of this class of compounds is described.  相似文献   
110.
Chk1 is a critical effector of DNA damage checkpoints necessary for the maintenance of chromosome integrity during cell cycle progression. Here we report, that Chk1 co-localized with the nucleolar marker, fibrillarin in response to radiation-induced DNA damage in human cells. Interestingly, in vitro studies using GST pull down assays identified the dual-specificity serine/threonine nucleolar phosphatase Cdc14B as a Chk1 substrate. Furthermore, Chk1, but not a kinase-dead Chk1 control, was shown to phosphorylate Cdc14B using an in vitro kinase assay. Co-immunoprecipitation experiments using exogenous Cdc14B transfected into human cells confirmed the interaction of Cdc14B and Chk1 during cell cycle. In addition, reduction of Chk1 levels via siRNA or UCN-01 treatment demonstrated that Chk1 activation following DNA damage was required for Cdc14B export from the nucleolus. these studies have revealed a novel interplay between Chk1 kinase and Cdc14B phosphatase involving radiation-induced nucleolar shuttling to facilitate error-free cell cycle progression and prevent genomic instability.Key words: Chk1, nucleoli, DNA damage, Cdc14B, genomic instabiliy, cell cycle  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号