首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   275篇
  免费   11篇
  国内免费   1篇
  2022年   1篇
  2021年   6篇
  2020年   4篇
  2019年   1篇
  2018年   6篇
  2017年   4篇
  2016年   9篇
  2015年   9篇
  2014年   11篇
  2013年   21篇
  2012年   23篇
  2011年   25篇
  2010年   14篇
  2009年   16篇
  2008年   14篇
  2007年   23篇
  2006年   13篇
  2005年   10篇
  2004年   10篇
  2003年   12篇
  2002年   10篇
  2001年   1篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1994年   2篇
  1993年   1篇
  1990年   3篇
  1989年   4篇
  1988年   8篇
  1987年   1篇
  1986年   3篇
  1985年   4篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有287条查询结果,搜索用时 312 毫秒
211.
Unstable atherosclerotic plaques of the carotid arteries are at great risk for the development of ischemic cerebrovascular events. The degradation of the extracellular matrix by matrix metalloproteinases (MMPs) and nitric oxide induced apoptosis of vascular smooth muscle cells (VSMCs) contribute to the vulnerability of the atherosclerotic plaques. Basic fibroblast growth factor (bFGF) through its mitogenic and angiogenic properties has already been implicated in the pathogenesis of atherosclerosis. However, its role in plaque stability remains elusive. To address this issue, a panel of human carotid atherosclerotic plaques was analysed for bFGF, FGF‐receptors‐1 and ‐2 (FGFR‐1/‐2), inducible nitric oxide synthase (iNOS) and MMP‐9 expression. Our data revealed increased expression of bFGF and FGFR‐1 in VSMCs of unstable plaques, implying the existence of an autocrine loop, which significantly correlated with high iNOS and MMP‐9 levels. These results were recapitulated in vitro by treatment of VSMCs with bFGF. bFGF administration led to up‐regulation of both iNOS and MMP‐9 that was specifically mediated by nuclear factor‐κB (NF‐κB) activation. Collectively, our data demonstrate a novel NF‐κB‐mediated pathway linking bFGF with iNOS and MMP‐9 expression that is associated with carotid plaque vulnerability.  相似文献   
212.
213.

Thiabendazole (TBZ) is a fungicide used in fruit-packaging plants. Its application leads to the production of wastewaters requiring detoxification. In the absence of efficient treatment methods, biological depuration of these effluents could be a viable alternative. However, nothing is known regarding the microbial degradation of the recalcitrant and toxic to aquatics TBZ. We report the isolation, via enrichment cultures from a polluted soil, of the first bacterial consortium able to rapidly degrade TBZ and use it as a carbon source. Repeated efforts using various culture-dependent approaches failed to isolate TBZ-degrading bacteria in axenic cultures. Denaturating gradient gel electrophoresis (DGGE) and cloning showed that the consortium was composed of α-, β- and γ-Proteobacteria. Culture-independent methods including antibiotics-driven selection with DNA/RNA-DGGE, q-PCR and stable isotope probing (SIP)-DGGE identified a Sphingomonas phylotype (B13) as the key degrading member. Cross-feeding studies with structurally related chemicals showed that ring substituents of the benzimidazole moiety (thiazole or furan rings) favoured the cleavage of the imidazole moiety. LC-MS/MS analysis verified that TBZ degradation proceeds via cleavage of the imidazole moiety releasing thiazole-4-carboxamidine, which was not further transformed, and the benzoyl moiety, possibly as catechol, which was eventually consumed by the bacterial consortium as suggested by SIP-DGGE.

  相似文献   
214.
215.
In Tetrahymena pyriformis the cytosolic ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17) activity is considerably inhibited by the presence of polyamines in the growth medium, while the nuclear ornithine decarboxylase is only slightly affected. Experimental evidence suggests that the presence of putrescine and/or spermidine elicits the appearance of non-competitive inhibitors of ornithine decarboxylase. One of the inhibitors has a molecular weight of 25,000 and properties of antizyme. In addition, two other low molecular weight inhibitors are extracted, one which is a phosphoserine oligopeptide, and the other which is phosphotyrosine. All inhibit non-competitively the homologous and heterologous (Escherichia coli and rat liver) ornithine decarboxylases. Similarly, non-competitive inhibition was obtained when the commercially available phosphoamino acids were tested against the already mentioned ornithine decarboxylases.  相似文献   
216.
217.
218.
219.
Gastric cancer is the fifth most common malignancy and the third leading cause of cancer‐related death worldwide. Activation of c‐MET increases tumour cell survival through the initiation of the DNA damage repair pathway. PARP is an essential key in the DNA damage repair pathway. The primary role of PARP is to detect and initiate an immediate cellular response to single‐strand DNA breaks. Tumours suppressor genes such as BRCA1/2 are closely associated with the DNA repair pathway. In BRCA1/2 mutations or deficiency status, cells are more likely to develop additional genetic alterations and chromosomal instability and can lead to cancer. In this study, we investigate the role of c‐MET and PARP inhibition in a gastric cancer model. We exploited functional in vitro and in vivo experiments to assess the antitumour potential of co‐inhibition of c‐MET (SU11274) and PARP (NU1025). This leads to a reduction of gastric cancer cells viability, especially after knockdown of BRCA1/2 through apoptosis and induction of γ‐Η2ΑΧ. Moreover, in AGS xenograft models, the combinatorial treatment of NU1025 plus SU11274 reduced tumour growth and triggers apoptosis. Collectively, our data may represent a new therapeutic approach for GC thought co‐inhibition of c‐MET and PARP, especially for patients with BRCA1/2 deficiency tumours.  相似文献   
220.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号