首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3047篇
  免费   206篇
  国内免费   2篇
  3255篇
  2024年   2篇
  2023年   24篇
  2022年   43篇
  2021年   90篇
  2020年   55篇
  2019年   59篇
  2018年   95篇
  2017年   62篇
  2016年   115篇
  2015年   163篇
  2014年   160篇
  2013年   225篇
  2012年   277篇
  2011年   252篇
  2010年   169篇
  2009年   139篇
  2008年   226篇
  2007年   178篇
  2006年   191篇
  2005年   131篇
  2004年   127篇
  2003年   126篇
  2002年   116篇
  2001年   22篇
  2000年   9篇
  1999年   23篇
  1998年   14篇
  1997年   16篇
  1996年   15篇
  1995年   21篇
  1994年   16篇
  1993年   10篇
  1992年   16篇
  1991年   8篇
  1990年   4篇
  1989年   8篇
  1987年   6篇
  1986年   2篇
  1985年   3篇
  1983年   2篇
  1982年   8篇
  1981年   5篇
  1980年   4篇
  1975年   1篇
  1974年   4篇
  1972年   3篇
  1971年   1篇
  1970年   1篇
  1961年   1篇
  1954年   1篇
排序方式: 共有3255条查询结果,搜索用时 15 毫秒
61.
62.
63.
Melatonin is involved in blood pressure modulation in rats and humans. Some of the effects of melatonin are presumably mediated via two G-protein-coupled receptors (MT1 and MT2), but the distribution of MT1 and MT2 in the cardiovascular system remains to be explored comprehensively. We investigated the expression of both the receptors in the rat aorta on mRNA level by RT-PCR and real time RT-PCR as well as on protein level via western blotting and immunofluorescence microscopy. We verified MT1 mRNA expression in the rat aorta and demonstrated the absence of MT2 mRNA in this vessel type. MT1 receptors were confirmed also at the protein level, and surprisingly they were preferentially localized to the tunica adventitia. Since no daily changes in MT1 mRNA expression were detected, we suppose that the circadian changes in circulating melatonin concentrations are sufficient to mediate circadian effects of melatonin in the aorta. The localization of MT1 in the tunica adventitia suggests an influence of melatonin on vasa vasorum function and signal transduction in the aorta wall.  相似文献   
64.
Light-induced modification of Photosystem II (PS II) complex was characterized in the cyanobacterium Synechococcus sp. PCC 7942 treated with either DCMU (a phenylurea PS II inhibitor) or BNT (a phenolic PS II inhibitor). The irradiance response of photoinactivation of PS II oxygen evolution indicated a BNT-specific photoinhibition that saturated at relatively low intensity of light. This BNT-specific process was slowed down under anaerobiosis, was accompanied by the oxygen-dependent formation of a 39 kDa D1 protein adduct, and was not related to stable QA reduction or the ADRY effect. In the BNT-treated cells, the light-induced, oxygen-independent initial drop of PS II electron flow was not affected by formate, an anion modifying properties of the PS II non-heme iron. For DCMU-treated cells, anaerobiosis did not significantly affect PS II photoinactivation, the D1 adduct was not observed and addition of formate induced similar initial decrease of PS II electron flow as in the BNT-treated cells. Our results indicate that reactive oxygen species (most likely singlet oxygen) and modification of the PS II acceptor side are responsible for the fast BNT-induced photoinactivation of PS II. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
65.
66.
Role of GPR40 in fatty acid action on the beta cell line INS-1E   总被引:7,自引:0,他引:7  
GPR40 is a G protein-coupled receptor expressed preferentially in beta cells, that has been implicated in mediating free fatty acid-stimulated insulin release. GPR40 RNAi impaired the ability of palmitic acid (PA) to increase both insulin secretion and intracellular calcium ([Ca2+]i). The PA-dependent [Ca2+]i increase was attenuated by inhibitors of Galphaq, PLC, and SERCA. Thus GPR40 activates the Galphaq pathway, leading to release of Ca2+ from the ER. Yet the GPR40-dependent [Ca2+]i rise was dependent on extracellular Ca2+ and elevated glucose, and was blocked by inhibition of L-type calcium channels (LTCC) or opening of the K(ATP) channel; this suggests that GPR40 promotes Ca2+ influx through up-regulation of LTCC pre-activated by glucose and membrane depolarization. Taken together, the data indicate that GPR40 mediates the increase in [Ca2+]i and insulin secretion through the Galphaq-PLC pathway, resulting in release of Ca2+ from the ER and leading to up-regulation of Ca2+ influx via LTCC.  相似文献   
67.
68.
In contrast to most other plant tissues, fleshy fruits are meant to be eaten in order to facilitate seed dispersal. Although fleshy fruits attract consumers, they may also contain toxic secondary metabolites. However, studies that link the effect of fruit toxins with seed dispersal and predation are scarce. Glucosinolates (GLSs) are a family of bitter-tasting compounds. The fleshy fruit pulp of Ochradenus baccatus was previously found to harbor high concentrations of GLSs, whereas the myrosinase enzyme, which breaks down GLSs to produce foul tasting chemicals, was found only in the seeds. Here we show the differential behavioral and physiological responses of three rodent species to high dose (80%) Ochradenus’ fruits diets. Acomys russatus, a predator of Ochradenus’ seeds, was the least sensitive to the taste of the fruit and the only rodent to exhibit taste-related physiological adaptations to deal with the fruits’ toxins. In contrast, Acomys cahirinus, an Ochradenus seed disperser, was more sensitive to a diet containing the hydrolyzed products of the GLSs. A third rodent (Mus musculus) was deterred from Ochradenus fruits consumption by the GLSs and their hydrolyzed products. We were able to alter M. musculus avoidance of whole fruit consumption by soaking Ochradenus fruits in a water solution containing 1% adenosine monophosphate, which blocks the bitter taste receptor in mice. The observed differential responses of these three rodent species may be due to evolutionary pressures that have enhanced or reduced their sensitivity to the taste of GLSs.  相似文献   
69.
The regulation of chromosome separation during mitosis is not fully understood yet. Microtubules forming mitotic spindles are targets of treatment strategies which are aimed at (i) the triggering of the apoptosis or (ii) the interruption of uncontrolled cell division. Despite these facts, only few physical models relating to the dynamics of mitotic spindles exist up to now. In this paper, we present the first electromechanical model which enables calculation of the electromagnetic field coupled to acoustic vibrations of the mitotic spindle. This electromagnetic field originates from the electrical polarity of microtubules which form the mitotic spindle. The model is based on the approximation of resonantly vibrating microtubules by a network of oscillating electric dipoles. Our computational results predict the existence of a rapidly changing electric field which is generated by either driven or endogenous vibrations of the mitotic spindle. For certain values of parameters, the intensity of the electric field and its gradient reach values which may exert a not-inconsiderable force on chromosomes which are aligned in the spindle midzone. Our model may describe possible mechanisms of the effects of ultra-short electrical and mechanical pulses on dividing cells—a strategy used in novel methods for cancer treatment.  相似文献   
70.
Nitric oxide (NO), generated from L-arginine by endothelial nitric oxide synthase (eNOS), is a key endothelial-derived factor whose bioavailability is essential to the normal function of the endothelium. Endothelium dysfunction is characterized by loss of NO bioavailability because of either reduced formation or accelerated degradation of NO. We have recently reported that overexpression of vascular cytochrome P-450 (CYP) 4A in rats caused hypertension and endothelial dysfunction driven by increased production of 20-hydroxyeicosatetraenoic acid (20-HETE), a major vasoconstrictor eicosanoid in the microcirculation. To further explore cellular mechanisms underlying CYP4A-20-HETE-driven endothelial dysfunction, the interactions between 20-HETE and the eNOS-NO system were examined in vitro. Addition of 20-HETE to endothelial cells at concentrations as low as 1 nM reduced calcium ionophore-stimulated NO release by 50%. This reduction was associated with a significant increase in superoxide production. The increase in superoxide in response to 20-HETE was prevented by N(G)-nitro-L-arginine methyl ester, suggesting that uncoupled eNOS is a source of this superoxide. The response to 20-HETE was specific in that 19-HETE did not affect NO or superoxide production, and, in fact, the response to 20-HETE could be competitively antagonized by 19(R)-HETE. 20-HETE had no effect on phosphorylation of eNOS protein at serine-1179 or threonine-497 following addition of calcium ionophore; however, 20-HETE inhibited association of eNOS with 90-kDa heat shock protein (HSP90). In vivo, impaired acetylcholine-induced relaxation in arteries overexpressing CYP4A was associated with a marked reduction in the levels of phosphorylated vasodilator-stimulated phosphoprotein, an indicator of bioactive NO, that was reversed by inhibition of 20-HETE synthesis or action. Because association of HSP90 with eNOS is critical for eNOS activation and coupled enzyme activity, inhibition of this association by 20-HETE may underlie the mechanism, at least in part, by which increased CYP4A expression and activity cause endothelial dysfunction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号