首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3047篇
  免费   206篇
  国内免费   2篇
  3255篇
  2024年   2篇
  2023年   24篇
  2022年   43篇
  2021年   90篇
  2020年   55篇
  2019年   59篇
  2018年   96篇
  2017年   62篇
  2016年   115篇
  2015年   163篇
  2014年   160篇
  2013年   226篇
  2012年   277篇
  2011年   252篇
  2010年   169篇
  2009年   139篇
  2008年   226篇
  2007年   178篇
  2006年   191篇
  2005年   131篇
  2004年   127篇
  2003年   126篇
  2002年   116篇
  2001年   22篇
  2000年   9篇
  1999年   22篇
  1998年   14篇
  1997年   16篇
  1996年   15篇
  1995年   21篇
  1994年   16篇
  1993年   10篇
  1992年   15篇
  1991年   8篇
  1990年   4篇
  1989年   8篇
  1987年   6篇
  1986年   2篇
  1985年   3篇
  1983年   2篇
  1982年   8篇
  1981年   5篇
  1980年   4篇
  1975年   1篇
  1974年   4篇
  1972年   3篇
  1971年   1篇
  1970年   1篇
  1961年   1篇
  1954年   1篇
排序方式: 共有3255条查询结果,搜索用时 15 毫秒
151.
Early-onset torsion dystonia (EOTD) is a neurological disorder characterized by involuntary and sustained muscle contractions that can lead to paralysis and abnormal posture. EOTD is associated with the deletion of a glutamate (ΔE) in torsinA, an endoplasmic reticulum (ER) resident AAA+ ATPase. To date, the effect of ΔE on torsinA and the reason that this mutation results in EOTD are unclear. Moreover, there are no specific therapeutic options to treat EOTD. To define the underlying biochemical defects associated with torsinAΔE and to uncover factors that might be targeted to offset defects associated with torsinAΔE, we developed a yeast torsinA expression system and tested the roles of ER chaperones in mediating the folding and stability of torsinA and torsinAΔE. We discovered that the ER lumenal Hsp70, BiP, an associated Hsp40, Scj1, and a nucleotide exchange factor, Lhs1, stabilize torsinA and torsinAΔE. BiP also maintained torsinA and torsinAΔE solubility. Mutations predicted to compromise specific torsinA functional motifs showed a synthetic interaction with the ΔE mutation and destabilized torsinAΔE, suggesting that the ΔE mutation predisposes torsinA to defects in the presence of secondary insults. In this case, BiP was required for torsinAΔE degradation, consistent with data that specific chaperones exhibit either pro-degradative or pro-folding activities. Finally, using two independent approaches, we established that BiP stabilizes torsinA and torsinAΔE in mammalian cells. Together, these data define BiP as the first identified torsinA chaperone, and treatments that modulate BiP might improve symptoms associated with EOTD.  相似文献   
152.
In an experiment with native maize roots depending on different phosphorus concentration in the external solution (0.001 … 50 mM P), the multiphasic character of the kinetics of phosphate uptake has been stated. The single phases are characterized by the different values of Km and Vmax. In the wide range of concentrations the isotherm of the phosphate uptake has five evident phases. The character of kinetics for the uptake of phosphate is analogical to the kinetics of the enzymatic reactions described by the Michaelis-Menten equation. On the other hand the linear dependence for the inactivated root was determined,i.e. the uptake of phosphate versus different phosphorus concentration in the external solution. The graphic representation of the logarithmic values for the phosphorus taken up versus the different phosphorus concentration in the external solution gives the biphasic course including concentration less than 1.0 mM P and more than 1.0 mM P. Within the framework of the concentration range the following values of Vmax, Km and ϕin were calculated under the conditions if the concentration of phosphorus is less than 1.0mMP: Vmax = 1.705 μmol P × g-1h-1, Km = 0.057 mM P and ϕin = 0.83,i.e. if the concentration of phosphorus is more than 1.0mM P: Vmax = 40 μmol P × g-1 h-1, Km = 16.66 mM and ϕin = 20. According to these results, the phosphate concentration in the external solution influences the activity of the transport mechanisms concerning their conformative changes which discretely change their working regime of membrane transport. This is also demonstrated in the change of values Vmax, Km and ϕin.  相似文献   
153.
154.
G protein-coupled receptor kinases (GRKs) phosphorylate activated G protein-coupled receptors, leading to their desensitization and endocytosis. GRKs have also been implicated in phosphorylating other classes of proteins and can localize in a variety of cellular compartments, including the nucleus. Here, we attempted to identify potential nuclear substrates for GRK5. Our studies reveal that GRK5 is able to interact with and phosphorylate nucleophosmin (NPM1) both in vitro and in intact cells. NPM1 is a nuclear protein that regulates a variety of cell functions including centrosomal duplication, cell cycle control, and apoptosis. GRK5 interaction with NPM1 is mediated by the N-terminal domain of each protein, and GRK5 primarily phosphorylates NPM1 at Ser-4, a site shared with polo-like kinase 1 (PLK1). NPM1 phosphorylation by GRK5 and PLK1 correlates with the sensitivity of cells to undergo apoptosis with cells having higher GRK5 levels being less sensitive and cells with lower GRK5 being more sensitive to PLK1 inhibitor-induced apoptosis. Taken together, our results demonstrate that GRK5 phosphorylates Ser-4 in nucleophosmin and regulates the sensitivity of cells to PLK1 inhibition.  相似文献   
155.
156.
More than two decades of genetic research have identified and assigned main biological functions of shelterin proteins that safeguard telomeres. However, a molecular mechanism of how each protein subunit contributes to the protecting function of the whole shelterin complex remains elusive. Human Repressor activator protein 1 (Rap1) forms a multifunctional complex with Telomeric Repeat binding Factor 2 (TRF2). Rap1–TRF2 complex is a critical part of shelterin as it suppresses homology-directed repair in Ku 70/80 heterodimer absence. To understand how Rap1 affects key functions of TRF2, we investigated full-length Rap1 binding to TRF2 and Rap1–TRF2 complex interactions with double-stranded DNA by quantitative biochemical approaches. We observed that Rap1 reduces the overall DNA duplex binding affinity of TRF2 but increases the selectivity of TRF2 to telomeric DNA. Additionally, we observed that Rap1 induces a partial release of TRF2 from DNA duplex. The improved TRF2 selectivity to telomeric DNA is caused by less pronounced electrostatic attractions between TRF2 and DNA in Rap1 presence. Thus, Rap1 prompts more accurate and selective TRF2 recognition of telomeric DNA and TRF2 localization on single/double-strand DNA junctions. These quantitative functional studies contribute to the understanding of the selective recognition of telomeric DNA by the whole shelterin complex.  相似文献   
157.

Background

RNA secondary structure prediction is a mainstream bioinformatic domain, and is key to computational analysis of functional RNA. In more than 30 years, much research has been devoted to defining different variants of RNA structure prediction problems, and to developing techniques for improving prediction quality. Nevertheless, most of the algorithms in this field follow a similar dynamic programming approach as that presented by Nussinov and Jacobson in the late 70's, which typically yields cubic worst case running time algorithms. Recently, some algorithmic approaches were applied to improve the complexity of these algorithms, motivated by new discoveries in the RNA domain and by the need to efficiently analyze the increasing amount of accumulated genome-wide data.

Results

We study Valiant's classical algorithm for Context Free Grammar recognition in sub-cubic time, and extract features that are common to problems on which Valiant's approach can be applied. Based on this, we describe several problem templates, and formulate generic algorithms that use Valiant's technique and can be applied to all problems which abide by these templates, including many problems within the world of RNA Secondary Structures and Context Free Grammars.

Conclusions

The algorithms presented in this paper improve the theoretical asymptotic worst case running time bounds for a large family of important problems. It is also possible that the suggested techniques could be applied to yield a practical speedup for these problems. For some of the problems (such as computing the RNA partition function and base-pair binding probabilities), the presented techniques are the only ones which are currently known for reducing the asymptotic running time bounds of the standard algorithms.  相似文献   
158.
Cell adhesion to the extracellular matrix is mediated by adhesion receptors, mainly integrins, which upon interaction with the extracellular matrix, bind to the actin cytoskeleton via their cytoplasmic domains. This association is mediated by a variety of scaffold and signaling proteins, which control the mechanical and signaling activities of the adhesion site. Upon transformation of fibroblasts with active forms of Src (e.g., v-Src), focal adhesions are disrupted, and transformed into dot-like contacts known as podosomes, and consisting of a central actin core surrounded by an adhesion ring. To clarify the mechanism underlying Src-dependent modulation of the adhesive phenotype, and its influence on podosome organization, we screened for the effect of siRNA-mediated knockdown of tyrosine kinases, MAP kinases and phosphatases on the reorganization of the adhesion-cytoskeleton complex, induced by a constitutively active Src mutant (SrcY527F). In this screen, we discovered several genes that are involved in Src-induced remodeling of the actin cytoskeleton. We further showed that knockdown of Src in osteoclasts abolishes the formation of the podosome-based rings and impairs cell spreading, without inducing stress fiber development. Our work points to several genes that are involved in this process, and sheds new light on the molecular plasticity of integrin adhesions.  相似文献   
159.
The Escherichia coli PriA helicase complex with the double-stranded DNA (dsDNA), the location of the strong DNA-binding subsite, and the effect of the nucleotide cofactors, bound to the strong and weak nucleotide-binding site of the enzyme on the dsDNA affinity, have been analyzed using the fluorescence titration, analytical ultracentrifugation, and photo-cross-linking techniques. The total site size of the PriA-dsDNA complex is only 5 ± 1 bp, that is, dramatically lower than 20 ± 3 nucleotides occluded in the enzyme-single-stranded DNA (ssDNA) complex. The helicase associates with the dsDNA using its strong ssDNA-binding subsite in an orientation very different from the complex with the ssDNA. The strong DNA-binding subsite of the enzyme is located on the helicase domain of the PriA protein. The dsDNA intrinsic affinity is considerably higher than the ssDNA affinity and the binding process is accompanied by a significant positive cooperativity. Association of cofactors with strong and weak nucleotide-binding sites of the protein profoundly affects the intrinsic affinity and the cooperativity, without affecting the stoichiometry. ATP analog binding to either site diminishes the intrinsic affinity but preserves the cooperativity. ADP binding to the strong site leads to a dramatic increase of the cooperativity and only slightly affects the affinity, while saturation of both sites with ADP strongly increases the affinity and eliminates the cooperativity. Thus, the coordinated action of both nucleotide-binding sites on the PriA-dsDNA interactions depends on the structure of the phosphate group. The significance of these results for the enzyme activities in recognizing primosome assembly sites or the ssDNA gaps is discussed.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号